The Swiss disposal concept foresees that carbon-14 (C) is predominantly released from irradiated steel disposed of in a cement-based repository for low- and intermediate-level radioactive waste. To predict how C migrates in the cementitious environment of the repository near field and subsequently in the host rock, knowledge about the carbon speciation during anoxic steel corrosion in alkaline conditions is therefore essential. To this end, batch-type corrosion experiments with carbon-containing zero-valent iron (ZVI) powders subject to oxidative pre-treatments were carried out in NaOH solution at pH 11 and 12.5. Alkanes and alkenes (C-C) were identified in the gas phase and produced on the iron surface by a Fischer-Tropsch type mechanism. The kind of oxidative pre-treatment has an effect on the production rate of hydrocarbons (HCs). In the liquid phase, carboxylic acids were identified and produced during the oxidative pre-treatment of the ZVI powders. They are released instantaneously from the oxide layer upon contact with the alkaline solution. The kind of oxidative treatment and the exposure time to oxic conditions directly influence the amount of carboxylic acids accommodated in the oxide layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2020.126230 | DOI Listing |
J Environ Manage
January 2025
Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China. Electronic address:
Antimony (Sb) contamination in paddy fields can lead to its accumulation in rice grains, posing a threat to food safety. To address this issue, the combined use of zero-valent iron (ZVI) and biochar (BC) were applied to decrease the uptake of Sb in Sb-polluted soils, and their effects on Sb uptake from soil to rice grains were investigated. Our results showed that the combination treatment of 0.
View Article and Find Full Text PDFToxics
January 2025
School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China.
Recently, the activation of chlorine dioxide (ClO) by metal(oxide) for soil remediation has gained notable attention. However, the related activation mechanisms are still not clear. Herein, the variation of iron species and ClO, the generated reactive oxygen species, and the toxicity of the degradation intermediates were explored and evaluated with nanoscale zero-valent iron (nFe) being employed to activate ClO for soil polycyclic aromatic hydrocarbon (PAH) removal.
View Article and Find Full Text PDFEnviron Res
January 2025
School of Environment, South China Normal University, Guangzhou 510006, China; Guangdong T'echnology Research Center for Ecological Management and Remediation of Water System, Guangzhou 510006, china.
Nano zero-valent iron (nZVI) is widely used for polychlorinated biphenyl (PBDE) remediation due to its cost-effectiveness and strong reduction capacity. However, its practical application is limited by poor stability, mobility, and antioxidant performance, as well as high reactivity that leads to side reactions and activity loss. To overcome these challenges, a poly(styrene)-encapsulated nZVI (PS-nZVI) core-shell structure was developed using dispersion polymerization.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Environmental Science and Engineering, Changzhou University, Changzhou, 213164, PR China.
Compared with zero-valent iron, iron sulfide has more diverse reactive species and higher reductivity, but it is still prone to be gradually deactivated due to various passivation factors. In this study, a novel reductive material (BMMW@OA) was prepared by ball milling of mackinawite (MW) as raw material and oxalic acid (OA) as modifier, so as to simultaneously improve its reductivity and stability by continuous releasing reductive species and maintaining freshness of the material surface. The BMMW@OA (w/w of MW/OA = 4/1) effectively removed Cr(Ⅵ) from water with wide pH adaptability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!