A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy. | LitMetric

3-Dimensional target coverage assessment for MRI guided esophageal cancer radiotherapy.

Radiother Oncol

Department of Radiation Oncology, University Medical Center Utrecht, Utrecht University, The Netherlands. Electronic address:

Published: June 2020

Purpose: This study aimed to quantify the coverage probability for esophageal cancer radiotherapy as a function of a preset margin for online MR-guided and (CB)CT-guided radiotherapy.

Methods: Thirty esophageal cancer patients underwent six T2-weighted MRI scans, 1 prior to treatment and 5 during neoadjuvant chemoradiotherapy at weekly intervals. Gross tumor volume (GTV) and clinical target volume (CTV) were delineated on each individual scan. Follow-up scans were rigidly aligned to the bony anatomy and to the clinical target volume itself, mimicking two online set-up correction strategies: a conventional CBCT-guided set-up and a MR-guided set-up, respectively. Geometric coverage probability of the propagated CTVs was assessed for both set-up strategies by expanding the reference CTV with an isotropic margin varying from 0 mm to 15 mm with an increment of 1 mm.

Results: A margin of 10 mm could resolve the interfractional changes for 118 out of the 132 (89%) analyzed fractions when applying a bone-match registration, whereas the CTV was adequately covered in 123 (93%) fractions when the registration was directly performed at the CTV itself (soft-tissue registration). Closer analyses revealed that target coverage violation predominantly occurred for distal tumors near the junction and into the cardia.

Conclusion: Online MR-guided soft-tissue registration protocols exhibited modest improvements of the geometric target coverage probability as compared to online CBCT-guided bone match protocols. Therefore, highly conformal target irradiation using online MR-guidance can only be achieved by implementing on-table adaptive workflows where new treatment plans are daily generated based on the anatomy of the day.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.radonc.2020.03.007DOI Listing

Publication Analysis

Top Keywords

target coverage
12
esophageal cancer
12
coverage probability
12
cancer radiotherapy
8
online mr-guided
8
clinical target
8
target volume
8
soft-tissue registration
8
coverage
5
online
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!