A phage-display library was generated using a Bus thalamus scorpion toxin (BTK-2) as a peptide scaffold. BTK-2 belongs to the disulfide-rich family of proteins with pronounced structural stability due to the presence of three disulfide bridges that connects antiparallel beta-sheets and one alpha helix. Using BTK-2 as a phage display scaffold, we introduced mutations in five residues located in the alpha-helix and two residues located in the smaller loop, keeping intact the disulfide bridges to create a peptide phage-displayed library with disulfide-rich family properties. The library was subjected to in vivo and in vitro phage display selections against Trypanosoma evansi, the etiological agent of "Surra", a disease that affects a wide range of mammals. The development of T. evansi specific biomarkers is essential to improve diagnostic methods and epidemiological studies leading to a more accurate clinical decision for the treatment of this disease of economic impact for commercial livestock production. In this study, we identified two disulfide-rich peptides targeting T. evansi parasites. Further specificity studies are necessary to investigate the potential of selected peptides as new biomarkers to aid diagnostic and treatment procedures of T. evansi infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exppara.2020.107885DOI Listing

Publication Analysis

Top Keywords

phage display
12
trypanosoma evansi
8
disulfide-rich family
8
disulfide bridges
8
residues located
8
evansi
5
targeting trypanosoma
4
evansi disulphide-rich
4
disulphide-rich peptides
4
peptides derived
4

Similar Publications

Background: Anti- Aβ monoclonal antibodies are the first FDA-approved treatments for AD that slow cognitive decline and lower Aβ plaques. Our goal is to identify the epitope specificities of antibodies in human blood that are associated with AD and NC and determine the predicted protein targets of these antibodies.

Method: 101 AD (MMSE < 27) and 98 NC (MMSE > 27) serum samples were obtained from the UCI tissue repository.

View Article and Find Full Text PDF

Background: Mature T-cell neoplasms arise from the neoplastic transformation of a single T lymphocyte, and all cells in a neoplastic clone share the same V segment in the beta chain of the T-cell receptor (TCR). These segments may represent an innovative target for the development of targeted therapies.

Methods: A specific V segment of the TCR beta chain (TRBV5-1) was analyzed using bioinformatic tools, identifying three potential antigenic peptides.

View Article and Find Full Text PDF

Screening and identification of vascular endothelial cell targeting peptide in gastric cancer through novel integrated in vitro and in vivo strategy.

BMC Cancer

December 2024

Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Avenue, Guangzhou, 510515, Guangdong, P.R. China.

Purpose: Antiangiogenesis therapy has become a hot field in cancer research. Given that tumor blood vessels often express specific markers related to angiogenesis, the study of these heterogeneous molecules in different tumor vessels holds promise for advancing anti-angiogenic therapy. Previously using phage display technology, we identified a targeting peptide named GX1 homing to gastric cancer vessels for the first time.

View Article and Find Full Text PDF

Background/objectives: Anterior Gradient-2 (AGR2/PDIA17) is a member of the protein disulfide isomerase (PDI) family of oxidoreductases. AGR2 is up-regulated in several solid tumors, including pancreatic ductal adenocarcinoma (PDAC). Given the dire need for new therapeutic options for PDAC patients, we investigated the expression and function of AGR2 in PDAC and developed a novel series of affinity-matured AGR2-specific single-chain variable fragments (scFvs) and monoclonal antibodies.

View Article and Find Full Text PDF

Antibodies and antibody mimics are extensively used in the pharmaceutical industry, where stringent safety standards are required. Implementing heat sterilization during or after the manufacturing process could help prevent contamination by viruses and bacteria. However, conventional antibodies and antibody mimics are not suitable for heat sterilization because they irreversibly denature at high temperatures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!