Cell transplantation is commonly used to study the regeneration and repair of the nervous system in animals. However, a technical platform used to evaluate the optimum number of transplanted cells in the recipient's spinal cord is little reported. Therefore, to develop such platform, we used a zebrafish model, which has transparent embryos, and transgenic line , which generates green fluorescent protein (GFP)-expressing cells in the central nervous system under hypoxic stress. After GFP-expressing cells, also termed as hypoxia-responsive recovering cells, were obtained from hypoxia-exposed embryos, we transplanted these GFP-(+) cells into the site of spinal cord injury (SCI) in adult wild-type zebrafish, followed by assessing the relationship between number of transplanted cells and the survival rate of recipients. When 100, 300, 500, and 1,000 GFP-(+) donor cells were transplanted into the lesion site of SCI-treated recipients, we found that recipient adult zebrafish transplanted with 300 donor cells had the highest survival rate. Those GFP-(+) donor cells could undergo proliferation and differentiation into neuron in recipients. Furthermore, transplantation of GFP-(+) cells into adult zebrafish treated with SCI was able to enhance the neuronal regeneration of recipients. In contrast, those fish transplanted with over 500 cells showed signs of inflammation around the SCI site, resulting in higher mortality. In this study, we developed a technological platform for transplanting cells into the lesion site of SCI-treated adult zebrafish and defined the optimum number of successfully transplanted cells into recipients, as 300, and those GFP-(+) donor cells could enhance recipient's spinal cord regeneration. Thus, we provided a practical methodology for studying cell transplantation therapy in neuronal regeneration of zebrafish after SCI.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7444222PMC
http://dx.doi.org/10.1177/0963689720903679DOI Listing

Publication Analysis

Top Keywords

adult zebrafish
16
spinal cord
16
donor cells
16
cells
15
neuronal regeneration
12
number transplanted
12
transplanted cells
12
gfp-+ donor
12
cord injury
8
cell transplantation
8

Similar Publications

Microcystin-leucine arginine (MC-LR) poses a serious threat to aquatic animals during cyanobacterial blooms. Recently, biochar (BC), derived from rice straw, has emerged as a potent adsorbent for eliminating hazardous contaminants from water. To assess the joint hepatotoxic effects of environmentally relevant concentrations of MC-LR and BC on fish, male adult zebrafish () were sub-chronically co-exposed to varying concentrations of MC-LR (0, 1, 5, and 25 μg/L) and BC (0 and 100 μg/L) in a fully factorial experiment.

View Article and Find Full Text PDF

Hypoxia-mediated cardiac tissue injury and its repair or regeneration are one of the major health management challenges globally. Unlike mammals, lower vertebrate species such as zebrafish (Danio rerio) represent a natural model to study cardiac injury, repair and regeneration. Thyroxine (T3) has been hypothesised to be one of the endocrine factors responsible for the evolutionary trade-off for acquiring endothermy and regenerative capability in higher vertebrates.

View Article and Find Full Text PDF

Skin, as the primary interface with the external environment, is susceptible to damage, posing a formidable challenge for complete restoration in adult skin injuries. Wound healing remains a clinical challenge, necessitating advanced biomaterials to support cell proliferation, modulate inflammation, and combat infections. Among several options, hydrogel can be a capable contender for biological dressings.

View Article and Find Full Text PDF

Toxic effects of chlorantraniliprole on zebrafish (Danio rerio) at different developmental stages under antibiotic pressure.

Environ Pollut

December 2024

Center for Pesticide Research, Department of Applied Chemistry, China Agricultural University, Beijing, 100193, China. Electronic address:

Pesticides and antibiotics have been frequently reported in the environment, but it remains unclear whether antibiotics affect the toxicity of pesticides to aquatic organisms. In this study, the acute, developmental and reproductive toxicity effects of the pesticide chlorantraniliprole on zebrafish at different developmental stages under pressure of ciprofloxacin and erythromycin at environmental concentration were explored. Chlorantraniliprole, ciprofloxacin, and erythromycin are all low toxic to zebrafish (LC > 100 mg/L), and environmental concentrations of antibiotics have no effect on the acute toxicity of chlorantraniliprole to zebrafish.

View Article and Find Full Text PDF

The intricate control of collective cell dynamics is crucial for enabling organismic development and tissue regeneration. Despite the availability of various in vitro and in vivo models, studies on tissue-scale cell dynamics and associated emergent properties in living systems remain methodically challenging. Here, we describe key advantages of using the adult zebrafish tailfin (caudal fin) as a robust in vivo model for dissecting millimeter-scale collective cell dynamics during regeneration and wound healing in a complex tissue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!