A modeling framework for biological pest control.

Math Biosci Eng

Department of Mathematics and its Applications, University of Milano - Bicocca, via R. Cozzi, 55, 20126 Milano, Italy.

Published: November 2019

AI Article Synopsis

Article Abstract

We present an analytic framework where biological pest control can be simulated. Control is enforced through the choice of a time and space dependent function representing the deployment of a species of predators that feed on pests. A sample of different strategies aimed at reducing the presence of pests is considered, evaluated and compared. The strategies explicitly taken into account range, for instance, from the uniform deployment of predators on all the available area over a short/long time interval, to the alternated insertion of predators in different specific regions, to the release of predators in suitably selected regions. The effect of each strategy is measured through a suitably defined cost, essentially representing the total amount of prey present over a given time interval over all the considered region, but the variation in time of the total amount of pests is also evaluated. The analytic framework is provided by an integro-differential hyperbolic-parabolic system of partial differential equations. While prey diffuse according to the usual Laplace operator, predators hunt for prey, moving at finite speed towards regions of higher prey density.

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2020072DOI Listing

Publication Analysis

Top Keywords

framework biological
8
biological pest
8
pest control
8
analytic framework
8
time interval
8
total amount
8
predators
5
modeling framework
4
control analytic
4
control simulated
4

Similar Publications

Background: Drug-drug interactions (DDIs) especially antagonistic ones present significant risks to patient safety, underscoring the urgent need for reliable prediction methods. Recently, substructure-based DDI prediction has garnered much attention due to the dominant influence of functional groups and substructures on drug properties. However, existing approaches face challenges regarding the insufficient interpretability of identified substructures and the isolation of chemical substructures.

View Article and Find Full Text PDF

Patients with High-Grade Serous Ovarian Cancer (HGSOC) exhibit varied responses to treatment, with 20-30% showing de novo resistance to platinum-based chemotherapy. While hematoxylin-eosin (H&E)-stained pathological slides are used for routine diagnosis of cancer type, they may also contain diagnostically useful information about treatment response. Our study demonstrates that combining H&E-stained whole slide images (WSIs) with proteomic signatures using a multimodal deep learning framework significantly improves the prediction of platinum response in both discovery and validation cohorts.

View Article and Find Full Text PDF

Joint association of objective and subjective aging with premature mortality.

NPJ Aging

January 2025

Department of Epidemiology, Celia Scott Weatherhead School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.

Objective and subjective aging indicators reflect diverse biological and psychosocial processes, yet their combined association with premature mortality remains underexplored. This study aimed to investigate the association between a multidomain framework of aging indicators and premature mortality, addressing gaps in understanding cumulative effects. We included 369,741 UK Biobank participants initially free of cardiovascular disease (CVD) and cancer, followed until December 31, 2022.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Protocol for a systematic review and individual participant data meta-analysis for risk factors for lung cancer in individuals with lung nodules identified by low-dose CT screening.

BMJ Open

January 2025

Centre for Cancer Screening, Prevention and Early Diagnosis, Wolfson Institute of Population Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.

Background: Worldwide, lung cancer (LC) is the second most frequent cancer and the leading cause of cancer related mortality. Low-dose CT (LDCT) screening reduced LC mortality by 20-24% in randomised trials of high-risk populations. A significant proportion of those screened have nodules detected that are found to be benign.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!