In the present study, we investigate the selective feeding of zooplankton on phytoplankton infected by free-viruses in the presence of environmental toxins in the marine ecosystem. The environmental toxins assume to decrease the growth rate of susceptible phytoplankton, and increase the death rate of infected phytoplankton and zooplankton. Global sensitivity analysis identifies important parameters of the system having crucial impact on the aquatic health. The coexistence equilibrium of the system stabilizes on increasing the parameters related to inhibition of phytoplankton growth due to environmental toxins and the force of infection, and destabilizes on increasing the carrying capacity of susceptible phytoplankton and preference of zooplankton on infected phytoplankton. The chance of extinction of free-viruses increases on increasing the preference of zooplankton on infected phytoplankton or decreasing the force of infection. Moreover, if the input rate of environmental toxins is high, then the system becomes zooplankton-free for higher values of force of infection. On increasing the values of preference of zooplankton on infected phytoplankton, the system exhibits transition from stable coexistence to oscillations around coexistence equilibrium to oscillations around disease-free equilibrium. We observe that the presence of free-viruses and environmental toxins in the system drive zooplankton population to very low equilibrium values but the ecological balance of the aquatic food web can be maintained by modulating the decay (depletion) rate of free-viruses (environmental toxins).

Download full-text PDF

Source
http://dx.doi.org/10.3934/mbe.2020065DOI Listing

Publication Analysis

Top Keywords

environmental toxins
28
infected phytoplankton
16
free-viruses environmental
12
force infection
12
preference zooplankton
12
zooplankton infected
12
phytoplankton
9
susceptible phytoplankton
8
coexistence equilibrium
8
environmental
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!