Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In this paper, we present a mathematical model of the immune response to parasites. The model is a type of predator-prey system in which the parasite serves as the prey and the immune response as the predator. The model idealizes the entire immune response as a single entity although it is comprised of several aspects. Parasite density is captured using logistic growth while the immune response is modeled as a combination of two components, activation by parasite density and an autocatalytic reinforcement process. Analysis of the equilibria of the model demonstrate bifurcations between parasites and immune response arising from the autocatalytic response component. The analysis also points to the steady states associated with disease resolution or persistence in leishmaniasis. Numerical predictions of the model when applied to different cases of Leishmania mexicana are in very close agreement with experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2020064 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!