Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In last decades, the interest to solve dynamic combinatorial optimization problems has increased. Metaheuristics have been used to find good solutions in a reasonably low time, and the use of self-adaptive strategies has increased considerably due to these kind of mechanism proved to be a good alternative to improve performance in these algorithms. On this research, the performance of a genetic algorithm is improved through a self-adaptive mechanism to solve dynamic combinatorial problems: 3-SAT, One-Max and TSP, using the genotype-phenotype mapping strategy and probabilistic distributions to define parameters in the algorithm. The mechanism demonstrates the capability to adapt algorithms in dynamic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2020052 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!