The structure and ultrafast dynamics of the electric double layer (EDL) are central to chemical reactivity and physical properties at solid/aqueous interfaces. While the Gouy-Chapman-Stern model is widely used to describe EDLs, it is solely based on the macroscopic electrostatic attraction of electrolytes for the charged surfaces. Structure and dynamics in the Stern layer are, however, more complex because of competing effects due to the localized surface charge distribution, surface-solvent-ion correlations, and the interfacial hydrogen bonding environment. Here, we report combined time-resolved vibrational sum frequency generation (TR-vSFG) spectroscopy with ab initio DFT-based molecular dynamics simulations (AIMD/DFT-MD) to get direct access to the molecular-level understanding of how ions change the structure and dynamics of the EDL. We show that innersphere adsorbed ions tune the hydrophobicity of the silica-aqueous interface by shifting the structural makeup in the Stern layer from dominant water-surface interactions to water-water interactions. This drives an initially inhomogeneous interfacial water coordination landscape observed at the neat interface toward a homogeneous, highly interconnected in-plane 2D hydrogen bonding (2D-HB) network at the ionic interface, reminiscent of the canonical, hydrophobic air-water interface. This ion-induced transformation results in a characteristic decrease of the vibrational lifetime () of excited interfacial O-H stretching modes from ∼ 600 fs to ∼ 250 fs. Hence, we propose that the determined by TR-vSFG in combination with DFT-MD simulations can be widely used for a quantitative spectroscopic probe of the ion kosmotropic/chaotropic effect at aqueous interfaces as well as of the ion-induced surface hydrophobicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.9b13273 | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Republic of Korea.
Ensuring the stability of electrocatalysts is paramount to the success of electrochemical energy conversion devices. Degradation is a fundamental process involving the release of positively charged metal ions into the electric double layer (EDL) and their subsequent diffusion into the bulk electrolyte. However, despite its vital importance in achieving prolonged electrocatalysis, the underlying causality of catalyst dissolution with the EDL structure remains largely unknown.
View Article and Find Full Text PDFSmall
January 2025
College of Semiconductors (College of Integrated Circuits), Hunan University Changsha, Hunan, 410082, P. R. China.
Tin-based halide perovskites (ASnX) have garnered substantial interest due to their unique photoelectric properties and environmentally friendly features. The A-site ions tuning strategy has been proven to promote material performance. However, there is a lack of systematic research on the optical properties, lattice structure variation, and band structure evolution in tin-based perovskites when the A-site ions tune from organic to inorganic.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
GuangDong Engineering Technology Research Center of Advanced Polymer Synthesis, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, College of Chemistry and Chemical Engineering, Shantou University, Guangdong 515063 China. Electronic address:
Fenton technology faces significant challenges due to external HO dependency and inadequate Fe regeneration. Constructing a photocatalytic self-Fenton system is a promising strategy, but it is hindered by slow charge dynamics and low mass transfer of reactant ions. Here, we present a multi-engineering co-modified carbon nitride (OCN) for efficient photocatalytic self-Fenton reactions.
View Article and Find Full Text PDFNanoscale
January 2025
Laboratoire Softmat, Université de Toulouse, CNRS UMR 5623, 118 route de Narbonne, 31062 Toulouse Cedex 9, France.
Hybrid polyionic complexes (HPICs) are colloidal structures with a charged core rich in metal ions and a neutral hydrophilic corona. Their properties, whether as reservoirs or catalysts, depend on the accessibility and environment of the metal ions. This study demonstrates that modifying the coordination sphere of these ions can tune the properties of HPICs by altering the composition of the complexing block or varying formulation conditions.
View Article and Find Full Text PDFQRB Discov
December 2024
Department of Chemistry, University of Oslo, NO-0315 Oslo, Norway.
Despite major efforts toward its eradication, cholera remains a major health threat and economic burden in many low- and middle-income countries. Between outbreaks, the bacterium responsible for the disease, , survives in aquatic environmental reservoirs, where it commonly forms biofilms, for example, on zooplankton. -acetyl glucosamine-binding protein A (GbpA) is an adhesin that binds to the chitinaceous surface of zooplankton and breaks its dense crystalline packing thanks to its lytic polysaccharide monooxygenase (LPMO) activity, which provides with nutrients.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!