Scanning gel electrochemical microscopy (SGECM) is a novel technique measuring local electrochemistry based on a gel probe. The gel probe, which is fabricated by electrodeposition of hydrogel on a microdisk electrode, immobilizes the electrolyte, and constitutes a two-electrode system upon contact with the sample. The contact area determines the lateral physical resolution of the measurement, and considering the soft nature of the gel it is essential to be well analyzed. In this work, the lateral physical resolution of SGECM is quantitatively studied from two aspects: (1) marking single sampling points by locally oxidizing Ag to AgCl and measuring their size; (2) line scan over reference samples with periodic topography and composition. The gel probe is approached to the sample by either current or shear force feedback, and the physical resolution of them is compared. For the optimal gel probe based on 25 μm diameter Pt disk electrode of ≈ 2, the lateral physical resolution of SGECM at contact position is ca. 50 μm for current feedback and ca. 63 μm for shear force feedback. More importantly, the lateral physical resolution of SGECM can be flexibly tuned in the range of 14-78 μm by pulling or pressing the gel probe after touching the sample. In general, current feedback is more sensitive to gel-sample contact than shear force feedback. But the latter is more versatile, which is also applicable to nonconductive samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.9b05538 | DOI Listing |
Nat Commun
December 2024
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Polar topologies, such as vortex and skyrmion, have attracted significant interest due to their unique physical properties and promising applications in high-density memory devices. To date, all known polar vortices are present in or induced by ferroelectric materials. In this study, we find polar vortex arrays in paraelectric SrTiO.
View Article and Find Full Text PDFMagn Reson Med
December 2024
Research Department of Early Life Imaging, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Purpose: Human brain development during gestation is complex, as both structure and function are rapidly forming. Structural imaging methods using MRI are well developed to explore these changes, but functional imaging tools are lacking. Low-field MRI is a promising modality to bridge this gap.
View Article and Find Full Text PDFHum Brain Mapp
January 2025
Department of Neuroscience and Biomedical Engineering, School of Science, Aalto University, Espoo, Finland.
State-of-the-art navigated transcranial magnetic stimulation (nTMS) systems can display the TMS coil position relative to the structural magnetic resonance image (MRI) of the subject's brain and calculate the induced electric field. However, the local effect of TMS propagates via the white-matter network to different areas of the brain, and currently there is no commercial or research neuronavigation system that can highlight in real time the brain's structural connections during TMS. This lack of real-time visualization may overlook critical inter-individual differences in brain connectivity and does not provide the opportunity to target brain networks.
View Article and Find Full Text PDFCureus
November 2024
Family Medicine, Unidade de Saúde Familiar, Unidade Local de Saúde de Braga, Braga, PRT.
Plantar psoriasis is a chronic inflammatory skin disorder, typically characterized by erythematous plaques with thick silvery scales localized on the soles. This condition can significantly impair patients' quality of life, particularly through pain and mobility challenges. It is considered a subtype of plaque psoriasis but presents unique diagnostic and therapeutic challenges due to its specific location.
View Article and Find Full Text PDFFront Cardiovasc Med
December 2024
Department of Paediatrics and Adolescent Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.
Background: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia disorder characterized by ventricular arrhythmia triggered by adrenergic stimulation.
Case Presentation: A 9-year-old boy presented with convulsions following physical exertion. Bidirectional ventricular tachycardia (VT) during a treadmill test led to the diagnosis of catecholaminergic polymorphic ventricular tachycardia (CPVT).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!