In light of the importance of and challenges inherent in realizing a wearable healthcare platform for simultaneously recognizing, preventing, and treating diseases while tracking vital signs, the development of simple and customized functional devices has been required. Here, we suggest a new approach for making a stretchable light waveguide which can be combined with integrated functional devices, such as organic photodetectors (PDs) and nanowire-based heaters, for multifunctional healthcare monitoring. Controlling the reflection condition of the medium gave a solid design rule for strong light emission in our stretchable waveguides. Based on this rule, the stretchable light waveguide (up to 50% strain) made of polydimethylsiloxane was successfully demonstrated with strong emissions. We also incorporated highly sensitive organic PDs and silver nanowire-based heaters with the stretchable waveguide for the detection of vital signs, including the heart rate, deep breathing, coughs, and blood oxygen saturation. Through these multifunctional performances, we have successfully demonstrated that our stretchable light waveguide has a strong potential for multifunctional healthcare monitoring.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.9b02529 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!