The polo-box domain (PBD) of PLK1 determines mitotic substrate recognition and subcellular localization. Compounds that target PLK1 selectively are required due to the tumor-suppressor roles of PLK3. A structure-activity analysis of the PBD phosphopeptide binding motif has identified potent peptides that delineate the determinants required for mimicry by nonpeptidic inhibitors and provide insights into the structural basis for the selectivity of inhibitors for the PLK1 PBD. Fragment-ligated inhibitory peptides (FLIPs) obtained through REPLACE have been optimized to enhance in vitro binding and a systematic analysis of selectivity for PLK1 vs PLK3 has been carried out for peptides and peptidomimetics. Furthermore, these more drug-like non-ATP-competitive inhibitors had on-target engagement in a cellular context, as evidenced by stabilization of PLK1 in a thermal-shift assay and by inhibition of the phosphorylation of TCTP, a target of PLK1. Investigation in cells expressing a mutant PLK1 showed that these cells are sensitive to PBD inhibitors but dramatically resistant to clinically investigated ATP-competitive compounds. These results further validate targeting the PBD binding site in the move towards PLK1 inhibitors that are active against tumors resistant to ATP inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7703809 | PMC |
http://dx.doi.org/10.1002/cmdc.202000137 | DOI Listing |
Cell Rep
January 2025
Genetics and Epigenetics Program, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Department of Genetics, University of Texas MD Anderson Cancer Center and The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA. Electronic address:
ERK activity oscillates between sustained activation during oocyte formation and transient inactivation during oocyte maturation, fertilization, and early embryogenesis. Consequences of ectopic ERK activity upon oocyte maturation and in early embryogenesis are unknown. We show, in Caenorhabditis elegans, that ectopic ERK activity upon oocyte maturation (metaphase I oocytes) results in embryos with abnormalities in nuclear divisions leading to embryonic death.
View Article and Find Full Text PDFCancer Sci
January 2025
Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan.
Effective therapeutic strategies for epithelioid sarcoma (EpS), a high-grade soft tissue sarcoma characterized by loss of integrase interactor 1 (INI1), have not yet been developed. The present study therefore investigated the association between INI1 loss and upregulation of the aurora kinase A (AURKA)/polo-like kinase 1 (PLK1)/cell division cycle 25C (CDC25C) axis, as well as the therapeutic relevance of this axis in EpS. Notably, our findings showed that the reintroduction of INI1 in VA-ES-BJ cells significantly reduced proliferation, mitigated tumorigenicity, and negatively regulated the expression of AURKA and its downstream effectors, as well as the activation of PLK1 and CDC25C.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Laboratory of Molecular and Cellular Neurogenetics, N.N. Burdenko National Medical Research Center of Neurosurgery, 125047 Moscow, Russia.
Indolo[2,3-]pyrrolo[3,4-]carbazole scaffold is successfully used as an efficient structural motif for the design and development of different antitumor agents. In this study, we investigated the anti-glioblastoma therapeutic potential of glycosylated indolocarbazole analog LCS1269 utilizing in vitro, in vivo, and in silico approaches. Cell viability was estimated by an MTT assay.
View Article and Find Full Text PDFCells
December 2024
Graduate Program of Biotechnology in Medicine, National Health Research Institutes, National Tsing Hua University, Hsinchu City 300, Taiwan.
Metastasis is a well-known factor worsening colorectal cancer (CRC) prognosis, but mortality mechanisms in non-metastatic patients with poor outcomes are less understood. TCF12 is a transcription factor that can be physically associated with the long non-coding RNA MALAT1, creating an alliance with correlated expression levels in CRC patients. This TCF12-MALAT1 alliance is linked to poorer prognosis independently of age and metastasis.
View Article and Find Full Text PDFBioorg Med Chem
December 2024
Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 1050 Boyles St., Frederick, MD 21702, USA.
Polo-like kinase 1 (Plk1) is an important cell cycle regulator that is a recognized target for development of anti-cancer therapeutics. Plk1 is composed of a catalytic kinase domain (KD), a flexible interdomain linker and a polo-box domain (PBD). Intramolecular protein-protein interactions (PPIs) between the PBD and KD result in "auto-inhibition" that is an essential component of proper Plk1 function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!