Myocardial dysfunction, a major component of sepsis-induced multiorgan failure, contributes to the production of massive amounts of pro-inflammatory cytokines. Nitric oxide (NO) is known to act as a precursor of free radicals in inflammation. This research was conducted to assess the effect of aminoguanidine (AG) on lipopolysaccharide (LPS)-induced heart injury. 50 male rats were categorized into five groups (n = 10): (1) control, (2) LPS, (3) LPS-AG50, (4) LPS-AG100, and (5) LPS-AG150. LPS (1 mg/kg) was injected for 5 weeks, and AG (50, 100 and 150 mg/kg) was injected 30 min prior to LPS administration. All drugs were injected intraperitoneally. LPS-evolved cardiovascular toxicity was indicated by the augmentation in the level of nitric oxide (NO) metabolites, interleukin (IL)-6 and malondialdehyde (MDA), as well as reduced contents of total thiol groups, catalase (CAT), and superoxide dismutase (SOD) activity in serum, heart, and aortic tissues. In AG treated groups, noxious effects of LPS were not observed in the serum and harvested tissues. AG reduced MDA, NO metabolites, and IL- 6 and increased total thiol, CAT, and SOD activity in the heart, aorta and serum. As an inhibitor of inducible NO synthase (iNOS), AG further reduced LPS-induced oxidative stress and inflammation, hence considered as cardioprotective.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12012-020-09570-wDOI Listing

Publication Analysis

Top Keywords

aminoguanidine lipopolysaccharide
8
nitric oxide
8
total thiol
8
sod activity
8
cardioprotective effects
4
effects aminoguanidine
4
lipopolysaccharide induced
4
induced inflammation
4
inflammation rats
4
rats myocardial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!