Jpn J Radiol
Department of Radiology, School of Medicine, Jichi Medical University, Tochigi, Japan.
Published: August 2020
Purpose: The purpose of this study was to evaluate the delineation of nerve fiber bundles in the brainstem and optic radiation in infants associated with aging on T1WI, T2WI, and phase difference-enhanced (PADRE) images.
Materials And Methods: We retrospectively reviewed 21 consecutive subjects < 2 years old who underwent brain MRI without abnormal imaging findings. Two neuroradiologists evaluated the eight nerve fiber bundles in the brainstem and optic radiation using a 3-point scale focused on the contrast to surrounding brain parenchyma. We also evaluated the signal ratio of the optic radiation to surrounding white matter on PADRE for each month age.
Results: T2WI was able to delineate nerve fiber bundles better than T1WI at 1 month old, and the images gradually became unclear with aging. On PADRE, almost all nerve fiber bundles were unclear or invisible at 1 month old but gradually became clearer with aging. There was a significant negative correlation between age and the signal ratio of the optic radiation to surrounding white matter.
Conclusions: The PADRE imaging was able to delineate the nerve fiber bundles in infants, and the delineation gradually became clearer with aging. The combination of PADRE, T1WI, and T2WI would be useful for evaluation of nerve fiber bundles in infants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11604-020-00955-z | DOI Listing |
Eur J Neurol
January 2025
Neuromuscular Unit, Neurology Department, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
Background: Charcot-Marie-Tooth (CMT) disease is the most common inherited neuropathy. In this study, we aimed to analyze the genetic spectrum and describe phenotypic features in a large cohort from Türkiye.
Methods: Demographic and clinical findings were recorded.
Medicina (Kaunas)
December 2024
Department of Rehabilitation Medicine, Hangang Sacred Heart Hospital, College of Medicine, Hallym University, 94-200 Yeongdeungpo-Dong, Yeongdeungpo-Ku, Seoul 07247, Republic of Korea.
Slit1 is a secreted protein that is closely related to cell movement and adhesion. Few studies related to fibrosis exist, and the preponderance of current research is confined to the proliferation and differentiation of neural systems. Hypertrophic scars (HTSs) are delineated by an overproduction of the extracellular matrix (ECM) by activated fibroblasts, leading to anomalous fibrosis, which is a severe sequela of burns.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Key Laboratory of Trauma and Neural Regeneration, Ministry of Education, Peking University, Beijing, 100044, China.
Aptamers represent a distinct category of short nucleotide sequences or peptide molecules characterized by their ability to bind to specific targets with high precision. These molecules are predominantly synthesized through SELEX (Systematic Evolution of Ligands by Exponential Enrichment) technology. Recent findings indicate that aptamers may have significant applications in regenerative medicine, particularly in the domain of tissue repair.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
December 2024
Department of Cardiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
Nat Commun
December 2024
Nanobiology Institute, Yale University, West Haven, CT, USA.
Neurotransmitters are released from synaptic vesicles with remarkable precision in response to presynaptic calcium influx but exhibit significant heterogeneity in exocytosis timing and efficacy based on the recent history of activity. This heterogeneity is critical for information transfer in the brain, yet its molecular basis remains poorly understood. Here, we employ a biochemically-defined fusion assay under physiologically relevant conditions to delineate the minimal protein machinery sufficient to account for various modes of calcium-triggered vesicle fusion dynamics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.