Sb- and Bi-based coordination polymers with N-donor ligands with and without lone-pair effects and their photoluminescence properties.

Dalton Trans

Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074 Würzburg, Germany and Institute of Inorganic and Analytical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, 35392 Giessen, Germany. and Center for Materials Research (LAMA), Justus-Liebig-University Giessen, Heinrich-Buff-Ring 16, 35392 Giessen, Germany.

Published: April 2020

Fifteen new sublimable Sb- and Bi-based chlorido, bromido and iodido coordination polymers (CPs) with linear bispyridyl ligands are presented in this work and compared in terms of their crystal structures and photoluminescence properties. The Sb-CPs occur in two structural motifs: 1∞[Sb2X6(L)2] (X: Cl (a), Br (b), I (c); L: 1,2-bis(4-pyridyl)ethylene (bpe) (1), 1,2-bis(4-pyridyl)ethane (bpa) (2), 4,4'-bipyridine (bipy) (X: Br, I; 3)) with two polymorphs showing negligible stereochemical demand of the lone-pair and 1∞[SbCl3(bipy)] (3a) featuring a stereochemically active lone pair with significant 5p-contribution at SbIII. This is accompanied by differences in the coordination polyhedra being octahedral for high s-character, whereas a high p-character of the lone pair results in a square pyramid as the coordination sphere. The Bi-CPs are represented by the general formula 1∞[Bi2X6(L)2] (X: Cl (a), Br (b), I (c); L: 1,2-bis(4-pyridyl)ethylene (bpe) (4), 1,2-bis(4-pyridyl)ethane (bpa) (5)) and thus show no significant 6p-character of the lone pairs. For examining the parallels and differences between the SbIII- and BiIII-CPs, both are compared in terms of structures and luminescence properties, as well as with related literature known CPs. Altogether, this comparison of structures and properties allows for gaining new insights into the photoluminescence mechanisms of the Sb and Bi-containing CPs. For the first time, distinct hints on the participation of inter-valence charge transfer transitions in E3+-pairs (E: Sb, Bi) were observed for the Sb- and Bi-containing coordination polymers constructed from N-donor ligands.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0dt00265hDOI Listing

Publication Analysis

Top Keywords

coordination polymers
12
sb- bi-based
8
n-donor ligands
8
photoluminescence properties
8
compared terms
8
12-bis4-pyridylethylene bpe
8
bpe 12-bis4-pyridylethane
8
12-bis4-pyridylethane bpa
8
lone pair
8
coordination
5

Similar Publications

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Ln-MOFs, composed of lanthanide ions and functional organic ligands, are porous materials with tunable structures and unique luminescent properties. However, the interplay between ligand AIE properties and the framework's "antenna effect" on MOF morphology is understudied. Here, Tb-D-Cam-TPTB was synthesized via solvothermal method using TPTB (persulfurated arene) as the primary ligand, D-Cam as the auxiliary ligand, and Tb3+ as the metal ion.

View Article and Find Full Text PDF

We present a strategy for enhancing Li conduction in block copolymer electrolytes by introducing trace amounts of Li salts into polystyrene--poly(ethylene oxide) (PS--PEO), wherein Li ions preferentially coordinate with the -OH end groups of the PEO chains, resulting in the formation of double primitive cubic (3̅) structures. Compared with TFSI anions in Li salts, smaller anions (PF and BF) could facilitate ion localization more effectively, expanding the salt concentration range for developing stable 3̅ structures. The 3̅ structures formed in PS--PEOs doped with LiBF at = 0.

View Article and Find Full Text PDF

A smartphone-integrated colorimetric sensor is introduced for the rapid detection of phenolic compounds, including 8-hydroquinone (HQ), p-nitrophenol (NP), and catechol (CC). This sensor relies on the peroxidase-mimicking activity of aspartate-based metal-organic frameworks (MOFs) such as Cu-Asp, Ce-Asp, and Cu/Ce-Asp. These MOFs facilitate the oxidation of a colorless substrate, 3,3',5,5'-tetramethylbenzidine (TMB), by reactive oxygen species (ROS) derived from hydrogen peroxide (HO), resulting in the formation of blue-colored oxidized TMB (ox-TMB).

View Article and Find Full Text PDF

Solid polymer electrolytes (SPEs) with mechanical strength and reduced flammability may also enable next-generation Li batteries with higher energy densities. However, conventional SPEs have fundamental limitations in terms of Li conductivity. While an imidazole functionalized polymer (PMS-Im) has been previously shown to have ionic conductivity related to the imidazole-Li coordination, herein we demonstrate that quaternization of this polymer to form an analogous imidazolium functionalized polymer (PMS-Im) more efficiently solvates lithium salts and plasticizes the polymer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!