The meiotic prophase I to metaphase I (PI/MI) transition requires chromosome desynapsis and metaphase competence acquisition. However, control of these major meiotic events is poorly understood. Here, we identify an essential role for SKP1, a core subunit of the SKP1-Cullin-F-box (SCF) ubiquitin E3 ligase, in the PI/MI transition. SKP1 localizes to synapsed chromosome axes and evicts HORMAD proteins from these regions in meiotic spermatocytes. SKP1-deficient spermatocytes display premature desynapsis, precocious pachytene exit, loss of PLK1 and BUB1 at centromeres, but persistence of HORMAD, γH2AX, RPA2, and MLH1 in diplonema. Strikingly, SKP1-deficient spermatocytes show sharply reduced MPF activity and fail to enter MI despite treatment with okadaic acid. SKP1-deficient oocytes exhibit desynapsis, chromosome misalignment, and progressive postnatal loss. Therefore, SKP1 maintains synapsis in meiosis of both sexes. Furthermore, our results support a model where SKP1 functions as the long-sought intrinsic metaphase competence factor to orchestrate MI entry during male meiosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096161 | PMC |
http://dx.doi.org/10.1126/sciadv.aaz2129 | DOI Listing |
Theriogenology
March 2025
College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China; Key Laboratory for Animal Production, Product Quality and Safety of Ministry of Education, Changchun, 130118, China. Electronic address:
Wanxi white goose is an important male parent in crossbreeding of Chinese geese, but its short reproductive cycle restricts its application in Northeast China. Therefore, understanding the potential mechanism of breeding period regulation in Wanxi white goose will help to provide more options for crossbreeding. In this study, the reproductive period was divided into prophase (T1), metaphase (T2) and anaphase (T3) according to the laying rhythm of geese.
View Article and Find Full Text PDFFront Genet
November 2024
Jinxin Research Institute for Reproductive Medicine and Genetics, Sichuan Jinxin Xi'nan Women's and Children's Hospital, Chengdu, China.
Sci Rep
October 2024
Laboratory of Cell Biology, Department of Microscopy, ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
The ultrastructure of human oocytes has been described only qualitatively. To offer a precise organelle spatial distribution and organelle volume during the main maturation stages, we previously conducted stereological studies on prophase-I (GV) and metaphase-I (MI) oocytes, and here we present results on metaphase-II (MII) oocytes. Five donor oocytes from different donors were processed for transmission electron microscopy, and quantification of organelle distribution was performed using point-counting stereology.
View Article and Find Full Text PDFBiology (Basel)
October 2024
Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia.
The speedy growth of copper oxide nanoparticle (CuO NP) manufacturing due to their wide application in industries has caused concerns due to their increased discharge into the environment from both purposeful and accidental sources. Their presence at an elevated concentration in the environment can cause potential hazards to the plant kingdom, specifically to staple food crops. However, limited research is available to determine the consequences of CuO NPs.
View Article and Find Full Text PDFCytogenet Genome Res
December 2024
Department of Botany and Plant Science, University of California Riverside, Riverside, California, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!