Slow slip events (SSEs) accommodate a significant proportion of tectonic plate motion at subduction zones, yet little is known about the faults that actually host them. The shallow depth (<2 km) of well-documented SSEs at the Hikurangi subduction zone offshore New Zealand offers a unique opportunity to link geophysical imaging of the subduction zone with direct access to incoming material that represents the megathrust fault rocks hosting slow slip. Two recent International Ocean Discovery Program Expeditions sampled this incoming material before it is entrained immediately down-dip along the shallow plate interface. Drilling results, tied to regional seismic reflection images, reveal heterogeneous lithologies with highly variable physical properties entering the SSE source region. These observations suggest that SSEs and associated slow earthquake phenomena are promoted by lithological, mechanical, and frictional heterogeneity within the fault zone, enhanced by geometric complexity associated with subduction of rough crust.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7096157PMC
http://dx.doi.org/10.1126/sciadv.aay3314DOI Listing

Publication Analysis

Top Keywords

slow slip
8
slip source
4
source characterized
4
characterized lithological
4
lithological geometric
4
geometric heterogeneity
4
heterogeneity slow
4
slip events
4
events sses
4
sses accommodate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!