Secondary structure effects on internal proton transfer in poly-peptides.

Struct Dyn

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Lyon, France.

Published: March 2020

A pump-probe approach was designed to determine the internal proton transfer (PT) rate in a series of poly-peptide radical cations containing both histidine and tryptophan. The proton transfer is driven by the gas-phase basicity difference between residues. The fragmentation scheme indicates that the gas-phase basicity of histidine is lower than that of radical tryptophan so that histidine is always pulling the proton away from tryptophan. However, the proton transfer requires the two basic sites to be in close proximity, which is rate limited by the peptide conformational dynamics. PT rate measurements were used to probe and explore the peptide conformational dynamics in several poly-glycines/prolines/alanines. For small and unstructured peptides, the PT rate decreases with the size, as expected from a statistical point of view in a flat conformational space. Conversely, if structured conformations are accessible, the structural flexibility of the peptide is decreased. This slows down the occurrence of conformations favorable to proton transfer. A dramatic decrease in the PT rates was observed for peptides HAW, when n changes from 5 to 6. This is attributed to the onset of a stable helix for n = 6. No such discontinuity is observed for poly-glycines or poly-prolines. In HAW, the gas-phase basicity and helix propensity compete for the position of the charge. Interestingly, in this competition between PT and helix formation in HAW, the energy gain associated with helix formation is large enough to slow down the PT beyond experimental time but does not ultimately prevail over the proton preference for histidine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7100371PMC
http://dx.doi.org/10.1063/4.0000003DOI Listing

Publication Analysis

Top Keywords

proton transfer
20
gas-phase basicity
12
internal proton
8
tryptophan proton
8
peptide conformational
8
conformational dynamics
8
helix formation
8
proton
7
transfer
5
secondary structure
4

Similar Publications

[FeFe]-hydrogenases are enzymes that catalyze the redox interconversion of H and H using a six-iron active site, known as the H-cluster, which consists of a structurally unique [2Fe] subcluster linked to a [4Fe-4S] subcluster. A set of enzymes, HydG, HydE, and HydF, are responsible for the biosynthesis of the [2Fe] subcluster. Among them, it is well established that HydG cleaves tyrosine into CO and CN and forms a mononuclear [Fe(II)(Cys)(CO)(CN)] complex.

View Article and Find Full Text PDF

Theoretical insights on the double ESIPT mechanism and fluorescence properties of HBIo chromophore.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004 PR China. Electronic address:

2-{[3-(1H-benzoimidazol-2-yl)-2-hydroxy-5-methylbenzylidene] amino}-benzoic acid (HBIo) based on proton transfer can serve as the fluorescent probe for detecting heavy metal ions. The excited-state intramolecular proton transfer (ESIPT) reaction mechanism of the HBIo chromophore with an intramolecular asymmetric double hydrogen bond in different solvents are investigated. The reaction barrier of the ESIPT along hydrogen bond O1-H2···N3 is higher than that of ESIPT along O4-H5···N6, which indicates that the double ESIPT is a stepwise process.

View Article and Find Full Text PDF

Sea urchin-like covalent organic frameworks/TiO heterostructure for enhanced photocatalytic CO conversion.

J Colloid Interface Sci

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China. Electronic address:

Photocatalytic reduction of CO to valuable chemicals is an effective strategy to address the environmental problems and energy crisis. Covalent organic frameworks (COFs) are emerging materials known for their excellent diverse properties, albeit limited by special synthetic methods, including high temperature (120 °C) and the necessity of inert gas atmosphere. Herein, a novel synthesis method under room temperature and air was optimized to form TpPa-COF (TP-COF) by p-phenylenediamine (Pa) and 2,4,6-triformyl phloroglucinol (Tp) through electrostatic self-assembly.

View Article and Find Full Text PDF

The enzyme 4-oxo-l-proline reductase (BDH2) has recently been identified in humans. BDH2, previously thought to be a cytosolic ()-3-hydroxybutyrate dehydrogenase, actually catalyzes the NADH-dependent reduction of 4-oxo-l-proline to -4-hydroxy-l-proline, a compound with known anticancer activity. Here we provide an initial mechanistic characterization of the BDH2-catalyzed reaction.

View Article and Find Full Text PDF

Engineered heme proteins possess excellent biocatalytic carbene N-H insertion abilities for sustainable synthesis, and most of them have His as the Fe axial ligand. However, information on the basic reaction mechanisms is limited, and ground states of heme carbenes involved in the prior computational mechanistic studies are under debate. A comprehensive quantum chemical reaction pathway study was performed for the heme model with a His analogue as the axial ligand and carbene from the widely used precursor ethyl diazoacetate with aniline as the substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!