The poor solubility and permeability of most chemotherapeutic drugs lead to unsatisfactory bioavailability combined with insufficient drug concentration. In this study, positively charged nanoparticles based on chitosan were developed and synthesized to enhance tumor penetration capability of 10-Hydroxycamptothecin (HCPT) in order to improve the chemotherapeutic effect of melanoma. The HCPT encapsulated nanoparticles were noted as NPs/HCPT. NPs/HCPT was characterized by dynamic light scattering and potential measurements. In addition, cell uptake, cytotoxicity, apoptosis and antitumor activity of NPs/HCPT were further investigated. The average diameter of NPs/HCPT was approximately 114.6 ± 4.1 nm. The viability of murine melanoma cell lines (B16F10 and B16F1) was significantly decreased due to interaction with NPs/HCPT. Moreover, NPs/HCPT significantly inhibited the progression of tumors. These investigations implied that cationic NPs/HCPT could be potentially applied as a promising drug delivery nanosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083073PMC
http://dx.doi.org/10.3389/fphar.2020.00317DOI Listing

Publication Analysis

Top Keywords

tumor penetration
8
nps/hcpt nps/hcpt
8
nps/hcpt
7
preparation characterization
4
characterization chitosan
4
chitosan nanoparticles
4
nanoparticles chemotherapy
4
chemotherapy melanoma
4
melanoma enhancing
4
enhancing tumor
4

Similar Publications

Advancing brain immunotherapy through functional nanomaterials.

Drug Deliv Transl Res

January 2025

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.

Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.

View Article and Find Full Text PDF

Single cell combined with laser ablation ICP-MS to study cisplatinum (IV) loaded nanoparticles penetration pathways in osteosarcoma spheroids.

Anal Chim Acta

January 2025

Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:

Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.

View Article and Find Full Text PDF

Triple-action cancer therapy using laser-activated NO-releasing metallomicellar nanophotosensitizer for pyroptosis-driven immune reprogramming.

J Control Release

January 2025

Department of Biomedical Sciences and BioMedical Sciences Graduate Program (BMSGP), Chonnam National University Medical School, Gwangju 61469, Republic of Korea; DR Cure Inc., Hwasun 58128, Republic of Korea. Electronic address:

Cancer photoimmunotherapy represents an intelligent and highly efficient therapeutic approach that harnesses the photothermal effect to precisely target and ablate tumor tissues, while simultaneously modulating the immune system to achieve tumor elimination. The integration of multifunctional therapeutic modalities for combined photoimmunotherapy requires advanced drug delivery systems. However, the design of a single nanoagent capable of serving as a multifunctional nanophotosensitizer remains a significant challenge.

View Article and Find Full Text PDF

Doxorubicin and topotecan resistance in ovarian cancer: Gene expression and microenvironment analysis in 2D and 3D models.

Biomed Pharmacother

January 2025

Institute of Health Sciences, Collegium Medicum, University of Zielona Góra, Zyty 28 St., Zielona Góra 65-046, Poland. Electronic address:

This study explores the mechanisms underlying chemotherapy resistance in ovarian cancer (OC) using doxorubicin (DOX) and topotecan (TOP)-resistant cell lines derived from the drug-sensitive A2780 ovarian cancer cell line. Both two-dimensional (2D) monolayer cell cultures and three-dimensional (3D) spheroid models were employed to examine the differential drug responses in these environments. The results revealed that 3D spheroids demonstrated significantly higher resistance to DOX and TOP than 2D cultures, suggesting a closer mimicry of in vivo tumour conditions.

View Article and Find Full Text PDF

Simplified biomimetic peptide-based vehicle for enhanced tumor penetration and rapid enzyme-induced drug release.

J Colloid Interface Sci

January 2025

State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China. Electronic address:

Various nanodrug vehicles were well-designed with complicated functions for tumor therapy. However, the unsatisfactory tumor delivery efficiency and uncertain off-target release became the stumbling block of the nanodrugs on the way to the clinic. Inspired by efficient tumor targeting ability of albumin, we reported a simplified biomimetic peptide-based vehicle synthesized by copolymerizing L-glutamyl-L-lysine unit (EK dimer, an intrinsic surface peptide pair from albumin) with L-phenylalanine (F) to encapsulate doxorubicin (Dox).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!