Lysyl oxidase expression is regulated by the H3K27 demethylase Jmjd3 in tumor-associated M2-like macrophages.

J Clin Biochem Nutr

Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu 501-1196, Japan.

Published: March 2020

Copper is one of the essential micronutrients, and copper-containing enzymes contribute to crucial functions in the body. Lysyl oxidase is a copper-containing enzyme that remodels the extracellular matrix by cross-linking collagen and elastin. The overexpression of lysyl oxidase was recently shown to promote tumor metastasis. M2-like macrophages were also found to significantly accumulate in the tumor microenvironment, and correlated with a poor patient's outcome. We speculate that M2-like macrophages promote tumor progression via lysyl oxidase expression. Epigenetics, a mitotically heritable change in gene expression without any change in DNA sequencing, is also associated with tumor progression. However, the relationship between lysyl oxidase expression in M2-like macrophages and epigenetics remains unclear. Lysyl oxidase expression was significantly induced in human leukemic THP-1 cell-derived M2-like macrophages. Furthermore, the level of histone H3 tri-methylation at lysine 27 was decreased, and a pre-treatment with a H3K27 demethylase inhibitor notably suppressed lysyl oxidase expression in M2-like macrophages. Lysyl oxidase derived from M2-like macrophages also enhanced breast cancer cell migration, and this was suppressed by a H3K27 demethylase inhibitor. The present results suggest the mechanism of lysyl oxidase expression in M2-like macrophages as an aspect of epigenetics, particularly histone methylation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7093300PMC
http://dx.doi.org/10.3164/jcbn.19-67DOI Listing

Publication Analysis

Top Keywords

lysyl oxidase
36
m2-like macrophages
32
oxidase expression
24
h3k27 demethylase
12
expression m2-like
12
lysyl
9
m2-like
8
macrophages
8
oxidase
8
promote tumor
8

Similar Publications

The process of regenerating bone injuries in diabetic presents significant challenges because lysine oxidase (LOX), a key catalytic enzyme for collagen cross-linking, is inhibited in hyperglycemia. The supplementation of LOX is constrained by inadequate sources and diminished enzymatic activity, necessitating the development of effective alternatives for enhancing bone regeneration in diabetes. Herein, we reported a lysyl oxidase nanozyme (LON), derived from the catalytic domain of LOX.

View Article and Find Full Text PDF

Background: Skin melanoma is a highly metastatic cancer with an increasing global incidence. Despite advancements in immunotherapy, new treatment strategies based on tumor biology are essential for improving outcomes and developing novel therapies. Autophagy plays a critical role in melanoma cell metabolism and affects the tumor microenvironment (TME).

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

Collagen I is the most abundant type of intramuscular collagen. Lysyl oxidase promotes collagen cross-link formation, which helps stabilize the extracellular matrix. Furthermore, matrix metalloproteinases, responsible for collagen degradation, maintain typical muscle structure and function through remodeling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!