Non-collinear and non-coplanar spin textures, such as chiral domain walls and helical or triangular spin structures, bring about diverse functionalities. Among them, magnetic skyrmions, particle-like non-coplanar topological spin structures characterized by a non-zero integer topological charge called the skyrmion number (N), have great potential for various spintronic applications, such as energy-saving, non-volatile memory and non-von Neumann devices. Current pulses can initiate skyrmion creation in thin-film samples but require relatively large current densities, which probably causes Joule heating. Moreover, skyrmion creation is localized at a specific position in the film depending on the sample design. Here, we experimentally demonstrate an approach to skyrmion creation employing surface acoustic waves (SAWs); in asymmetric multilayers of Pt/Co/Ir, propagating SAWs induce skyrmions in a wide area of the magnetic film. Micromagnetic simulations reveal that inhomogeneous torque arising from both SAWs and thermal fluctuations creates magnetic textures, with pair structures consisting of a Néel skyrmion-like and an antiskyrmion-like structure. Subsequently, such pairs transform to a Néel skyrmion due to the instability of the antiskyrmion-like structure in a system with interfacial Dzyaloshinskii-Moriya interaction. Our findings provide a tool for efficient manipulation of topological spin objects without heat dissipation and over large areas, given that the propagation length of SAWs is of the order of millimetres.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41565-020-0661-1 | DOI Listing |
Nat Commun
January 2025
Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University, Beijing, 100084, China.
Skyrmion bags, with arbitrary topological charge Q, have recently attracted much interest, since such high-Q topological systems could open a way for topological magnetism research and are promising for spintronic applications with high flexibility for information encoding. Investigation on room-temperature skyrmion bags in magnetic multilayered structures is essential for applications and remains unexplored so far. Here, we demonstrate room-temperature creation and manipulation of individual skyrmion bags in magnetic multilayered disks.
View Article and Find Full Text PDFNano Lett
January 2025
Anhui Province Key Laboratory of Low-Energy Quantum Materials and Devices, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
We report deterministic operations on single dipolar skyrmions confined in nanostructured cuboids by using in-plane currents. We achieve highly reversible writing and deleting of skyrmions in a simple cuboid without any artificial defects or pinning sites. The current-induced creation of skyrmions is well-understood through the spin-transfer torque acting on surface spin twists of the spontaneous 3D ferromagnetic state, caused by the magnetic dipole-dipole interaction of the uniaxial FeSn magnet with a low-quality factor.
View Article and Find Full Text PDFNanoscale
October 2024
State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China.
Two-dimensional multiferroic materials that exhibit both ferroelectricity and ferromagnetism provide a new platform for the discovery and regulation of magnetic skyrmions. In this study, we utilize first-principles calculations and Monte Carlo simulations to explore the properties and regulation of magnetic skyrmions in a novel multiferroic monolayer, MnOBr. MnOBr exhibits skyrmions without the need for an external magnetic field.
View Article and Find Full Text PDFSci Rep
September 2024
Department of Electrical and Electronic Engineering, Faculty of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya, Tochigi, 321-8585, Japan.
Skyrmion structures play critical roles in solid-state systems involving electric, magnetic and optical fields. Previous approaches to the study of skyrmions have involved specific structures in magnetic materials, liquid crystals and polymers in addition to two-dimensional arrays used for electrical control. These methods have encountered limitations and constraints on both the microscopic and macroscopic scales related to the physical properties of materials.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2024
Helmholtz-Zentrum Berlin, Albert-Einstein Str. 15, 12489 Berlin, Germany.
Swirling spin textures, including topologically nontrivial states, such as skyrmions, chiral domain walls, and magnetic vortices, have garnered significant attention within the scientific community due to their appeal from both fundamental and applied points of view. However, their creation, controlled manipulation, and stability are typically constrained to certain systems with specific crystallographic symmetries, bulk or interface interactions, and/or a precise stacking sequence of materials. Recently, a new approach has shown potential for the imprint of magnetic radial vortices in soft ferromagnetic compounds making use of the stray field of YBaCuO superconducting microstructures in ferromagnet/superconductor (FM/SC) hybrids at temperatures below the superconducting transition temperature ().
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!