The behavior of the electric field in Cold Atmospheric-Pressure Plasma jets (CAPP jets) is important in many applications related to fundamental science and engineering, since it provides crucial information related to the characteristics of plasma. To this end, this study is focused on the analytic computation of the electric field in a standard plasma reactor system (in the absence of any space charge), considering the two principal configurations of either one-electrode or two-electrodes around a dielectric tube. The latter is considered of minor contribution to the field calculation that embodies the working gas, being an assumption for the current research. Our analytical technique employs the cylindrical geometry, properly adjusted to the plasma jet system, whereas handy subdomains separate the area of electric activity. Henceforth, we adapt the classical Maxwell's potential theory for the calculation of the electric field, wherein standard Laplace's equations are solved, supplemented by the appropriate boundary conditions and the limiting conduct at the exit of the nozzle. The theoretical approach matches the expected physics and captures the corresponding essential features in a fully three-dimensional fashion via the derivation of closed-form expressions for the related electrostatic fields as infinite series expansions of cylindrical harmonic eigenfunctions. The feasibility of our method for both cases of the described experimental setup is eventually demonstrated by efficiently incorporating the necessary numerical implementation of the obtained formulae. The analytical model is benchmarked against reported numerical results, whereas discrepancies are commented and prospective work is discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105503 | PMC |
http://dx.doi.org/10.1038/s41598-020-61939-7 | DOI Listing |
Nat Ecol Evol
January 2025
Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, USA.
The emergence of generative artificial intelligence (AI) models specializing in the generation of new data with the statistical patterns and properties of the data upon which the models were trained has profoundly influenced a range of academic disciplines, industry and public discourse. Combined with the vast amounts of diverse data now available to ecologists, from genetic sequences to remotely sensed animal tracks, generative AI presents enormous potential applications within ecology. Here we draw upon a range of fields to discuss unique potential applications in which generative AI could accelerate the field of ecology, including augmenting data-scarce datasets, extending observations of ecological patterns and increasing the accessibility of ecological data.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
Accurate, practical, and robust evaluation of the battery state of health is crucial to the efficient and reliable operation of electric vehicles. However, the limited availability of large-scale, high-quality field data hinders the development of the battery management system for state of health estimation, lifetime prediction, and fault detection in various applications. In this work, to gain insights into underlying factors limiting battery management system performance in real-world vehicles, we analyze the operational data of 300 diverse electric vehicles over three years to understand the disparities between field data and laboratory battery test data and their effect on state of health estimation.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China.
As breath nitric oxide (NO) is a biomarker of respiratory inflammation, reliable techniques for the online detection of ppb-level NO in exhaled breath are essential for the noninvasive diagnosis of respiratory inflammation. Here, we report a breath NO sensor based on the multiperiodic spectral reconstruction neural network. First, a spectral reconstruction method that transforms a spectrum from the wavelength domain to the intensity domain is proposed to remove noise and interference signals from the spectrum.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, National Engineering Research Center of Edible Fungi, Key Laboratory of Edible Fungi Resources and Utilization (South), Ministry of Agriculture, Shanghai 201403, China. Electronic address:
Edible mushroom-derived polysaccharides (EMPs) have been widely used in foods, medicine, and cosmetics due to theirs' diverse and versatile biological activities. Currently, many conventional extraction methods for extracting EMPs are struggling to meet the growing demand, and the produced EMPs with poor quality and low bioactivity. Novel physical field (e.
View Article and Find Full Text PDFBrain Stimul
January 2025
Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!