A Scoping Review: The Impact of Housing Systems and Environmental Features on Beef Cattle Welfare.

Animals (Basel)

Department of Animal Science, Texas A&M University, College Station, TX 77845, USA.

Published: March 2020

Housing systems and environmental features can influence beef cattle welfare. To date, little information has been synthesized on this topic. The aim of this scoping review was to examine the relationship between housing and welfare status, so that beef cattle producers and animal scientists can make informed decisions regarding how their housing choices could impact beef cattle welfare. Housing features were categorized by floor type, space allowance and shade availability, as well as the inclusion of enrichment devices or ventilation features. Evaluation of space allowances across feedlot environments determined behavioral and production benefits when cattle were housed between 2.5 m to 3.0 m per animal. Over 19 different flooring types were investigated and across flooring types; straw flooring was viewed most favorably from a behavioral, production and hygiene standpoint. Veal calves experience enhanced welfare (e.g., improved behavioral, physiological, and performance metrics) when group housed. There is evidence that the implementation of progressive housing modifications (e.g., shade, environmental enrichment) could promote the behavioral welfare of feedlot cattle. This review presents the advantages and disadvantages of specific housing features on the welfare of beef cattle.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222360PMC
http://dx.doi.org/10.3390/ani10040565DOI Listing

Publication Analysis

Top Keywords

beef cattle
20
cattle welfare
12
scoping review
8
housing systems
8
systems environmental
8
environmental features
8
welfare housing
8
housing features
8
behavioral production
8
flooring types
8

Similar Publications

Integrating multi-layered biological priors to improve genomic prediction accuracy in beef cattle.

Biol Direct

December 2024

Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.

Background: Integrating multi-layered information can enhance the accuracy of genomic prediction for complex traits. However, the improvement and application of effective strategies for genomic prediction (GP) using multi-omics data remains challenging.

Methods: We generated 11 feature sets for sequencing variants from genomics, transcriptomics, metabolomics, and epigenetics data in beef cattle, then we assessed the contribution of functional variants using genomic restricted maximum likelihood (GREML).

View Article and Find Full Text PDF

Biosecurity: The Foundation to Cattle and Small Ruminant Health.

Vet Clin North Am Food Anim Pract

December 2024

Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO 80523, USA. Electronic address:

View Article and Find Full Text PDF

Background/aim: This study aimed to investigate the safety and efficacy of deferoxamine (DFO) pretreated feline adipose tissue derived mesenchymal stem cells (fATMSCs) for the treatment of inflammatory disorders.

Materials And Methods: fATMSCs were isolated from feline adipose tissue and characterized using flow cytometry for surface marker expression and differentiation assays for adipogenic, osteogenic, and chondrogenic lineages. Different concentrations of DFO were used to evaluate its impact on fATMSC activity.

View Article and Find Full Text PDF

In this study, the nano chitosan particles were produced by ionotropic gelation between sodium tripolyphosphate and chitosan. The effect of nano chitosan with or without sodium lactate coating was evaluated on physicochemical (pH, thiobarbituric acid, total volatile basic nitrogen, and peroxide), microbial (total mesophilic and psychrotrophic viable counts, lactic acid bacteria, yeasts, and molds), and sensorial properties of beef burgers within 24 days of storage at 4°C. The solutions of 1% nano chitosan (T), 2% nano chitosan (T), 2.

View Article and Find Full Text PDF

The snaplage residue presents itself as a potential alternative roughage source in finishing systems, owing to its high fiber concentration which aids in maintaining rumen health. Nevertheless, the performance of animals will hinge on both the allowance and the nutritive value it offers. This study aimed to evaluate different stocking rates of heifers grazing snaplage residue as an exclusive source of fiber on finishing phase performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!