The research of natural products has allowed for the discovery of biologically relevant compounds inspired by plant secondary metabolites, which contributes to the development of many chemotherapeutic drugs used in cancer treatment. leaves present a diverse phytochemical composition including flavonoids, phenolics, meroterpenoids, and triterpenes as the major bioactive constituents. Guajadial, a caryophyllene-based meroterpenoid, has been studied for potential anticancer effects tested in tumor cells and animal experimental models. Moreover, guajadial has been reported to have a mechanism of action similar to tamoxifen, suggesting this compound as a promisor phytoestrogen-based therapeutic agent. Herein, the anti-estrogenic action and anti-proliferative activity of guajadial is reported. The enriched guajadial fraction was obtained by sequential chromatographic techniques from the crude dichloromethane extract showing promising anti-proliferative activity in vitro with selectivity for human breast cancer cell lines MCF-7 and MCF-7 BUS (Total Growth Inhibition = 5.59 and 2.27 µg·mL, respectively). Furthermore, evaluation of anti-estrogenic activity in vivo was performed demonstrating that guajadial enriched fraction inhibited the proliferative effect of estradiol on the uterus of pre-pubescent rats. These results suggest a relationship between anti-proliferative and anti-estrogenic activity of guajadial, which possibly acts in tumor inhibition through estrogen receptors due to the compounds structural similarity to tamoxifen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181212PMC
http://dx.doi.org/10.3390/molecules25071525DOI Listing

Publication Analysis

Top Keywords

anti-estrogenic activity
12
activity guajadial
12
guajadial fraction
8
guajadial reported
8
anti-proliferative activity
8
guajadial
7
anti-estrogenic
4
fraction guava
4
guava leaves
4
leaves natural
4

Similar Publications

Estrogenic actions of alkaloids: Structural characteristics and molecular mechanisms.

Biochem Pharmacol

November 2024

Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan.

This comprehensive review of estrogenic alkaloids reveals that although the number is small, they exhibit a wide range of structures, biosynthesis pathways, mechanisms of action, and applications. Estrogenic alkaloids belong to different classes, different biosynthetic pathways, different estrogenic actions (estrogenic/synergistic, anti-estrogenic/antagonistic, biphasic, and acting as a selective estrogen receptor modulator or SERM), different receptor-initiated signaling pathways, different ways of modulations of estrogen action, and different applications. The future applications of estrogenic alkaloids, such as those for diagnostics, drug development, and therapeutics, are considered with the help of new databases containing comprehensive descriptions of their relationships and more elaborate artificial intelligence-based prediction technologies.

View Article and Find Full Text PDF

Phytoestrogens, derived from plants possesses structural similarity with 17 β-estradiol found in mammals. It is abundantly present in soybean along with red clove, alfalfa as well as other legumes, nuts, vegetables and seeds. It is used as hormone replacement therapy and exhibits both anti-estrogenic and estrogenic properties that linked to therapeutic benefits as well as plays active role in sports nutrition.

View Article and Find Full Text PDF

Concerns regarding man-made organic chemicals pervading our ecosystem and having adverse and detrimental effects upon organisms, including man, have now been studied for several decades. Since the 1970s, some environmental pollutants were identified as having endocrine disrupting affects. These endocrine disrupting chemicals (EDC) were initially shown to have estrogenic or anti-estrogenic properties and some were also shown to bind to a variety of hormone receptors.

View Article and Find Full Text PDF

Anti-estrogenic therapy is established in the management of estrogen receptor (ER)-positive breast cancer. However, to overcome resistance and improve therapeutic outcome, novel strategies are needed such as targeting widely recognized aberrant epigenetics. The study aims to investigate the combination of the aromatase inhibitor exemestane and the histone deacetylase (HDAC) inhibitor and antioxidant α-lipoic acid in ER-positive breast cancer cells.

View Article and Find Full Text PDF

Despite being the focal point of decades of research, female breast cancer (BC) continues to be one of the most lethal cancers in the world. Given that 80 % of all diagnosed BC cases are estrogen receptor-positive (ER+) with carcinogenesis driven by estrogen-ERα signalling, current standard of care (SOC) hormone therapies are geared towards modulating the function and expression levels of estrogen and its receptors, ERα and ERβ. Currently, aromatase inhibitors (AIs), selective ER modulators (SERMs) and selective ER degraders (SERDs) are clinically prescribed for the management and treatment of ER+ BC, with the anti-aromatase activity of AIs abrogating estrogen biosynthesis, while the anti-estrogenic SERMs and SERDs antagonise and degrade the ER, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!