Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Smartphones have emerged as a revolutionary technology for monitoring everyday life, and they have played an important role in Human Activity Recognition (HAR) due to its ubiquity. The sensors embedded in these devices allows recognizing human behaviors using machine learning techniques. However, not all solutions are feasible for implementation in smartphones, mainly because of its high computational cost. In this context, the proposed method, called HAR-SR, introduces information theory quantifiers as new features extracted from sensors data to create simple activity classification models, increasing in this way the efficiency in terms of computational cost. Three public databases (SHOAIB, UCI, WISDM) are used in the evaluation process. The results have shown that HAR-SR can classify activities with 93% accuracy when using a leave-one-subject-out cross-validation procedure (LOSO).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181294 | PMC |
http://dx.doi.org/10.3390/s20071856 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!