Cytokine and Cancer Biomarkers Detection: The Dawn of Electrochemical Paper-Based Biosensor.

Sensors (Basel)

School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Published: March 2020

Although the established ELISA-based sensing platforms have many benefits, the importance of cytokine and cancer biomarkers detection for point-of-care diagnostics has propelled the search for more specific, sensitive, simple, accessible, yet economical sensor. Paper-based biosensor holds promise for future in-situ applications and can provide rapid analysis and data without the need to conduct in a laboratory. Electrochemical detection plays a vital role in interpreting results obtained from qualitative assessment to quantitative determination. In this review, various factors affecting the design of an electrochemical paper-based biosensor are highlighted and discussed in depth. Different detection methods, along with the latest development in utilizing them in cytokine and cancer biomarkers detection, are reviewed. Lastly, the fabrication of portable electrochemical paper-based biosensor is ideal in deliberating positive societal implications in developing countries with limited resources and accessibility to healthcare services.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7180619PMC
http://dx.doi.org/10.3390/s20071854DOI Listing

Publication Analysis

Top Keywords

paper-based biosensor
16
cytokine cancer
12
cancer biomarkers
12
biomarkers detection
12
electrochemical paper-based
12
detection
5
detection dawn
4
electrochemical
4
dawn electrochemical
4
paper-based
4

Similar Publications

A simple and colorimetric method utilizing cell-free toehold switch sensors for the detection of Chlamydia trachomatis, Ureaplasma urealyticum and Neisseria gonorrhoeae.

Anal Chim Acta

February 2025

Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Clinical Laboratory Diagnostics, The First Clinical College, Fujian Medical University, Fuzhou, 350004, China; Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, 350004, China; Fujian Clinical Research Center for Clinical Immunology Laboratory Test, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350004, China; Department of Laboratory Medicine, National Reginal Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350207, China. Electronic address:

Background: Sexually transmitted infections (STIs) rank among the most prevalent acute infectious conditions and remain a major global public health concern. Notable STI pathogens include Chlamydia trachomatis (CT), Ureaplasma urealyticum (UU), and Neisseria gonorrhoeae (NG). Early detection and diagnosis are crucial for controlling the spread of STIs.

View Article and Find Full Text PDF

Porous Silicon on Paper: A Platform for Quantitative Rapid Diagnostic Tests.

ACS Appl Mater Interfaces

January 2025

Interdisciplinary Material Science Program, Vanderbilt University, Nashville, Tennessee 37235, United States.

Porous silicon (PSi) thin films on silicon substrates have been extensively investigated in the context of biosensing applications, particularly for achieving label-free optical detection of a wide range of analytes. However, mass transport challenges have made it difficult for these biosensors to achieve rapid response times and low detection limits. In this work, we introduce an approach for improving the efficiency of molecule transport in PSi by using open-ended PSi membranes atop paper substrates in a flow-through sensor scheme.

View Article and Find Full Text PDF

In recent years, the increasing prevalence of viral infections such as dengue (DENV) and chikungunya (CHIKV) has emphasized the vital need for new diagnostic techniques that are not only quick and inexpensive but also suitable for point-of-care and home usage. Existing diagnostic procedures, while useful, sometimes have limits in terms of speed, mobility, and price, particularly in resource-constrained environments and during epidemics. To address these issues, this study proposes a novel technique that combines 3D printing technology with electrochemical biosensors to provide a highly sensitive, user-friendly, and customizable diagnostic platform.

View Article and Find Full Text PDF

Compared with previous decades, healthcare has emerged as a key global concern in light of the recurrent outbreak of pandemics. The initial stage in the provision of healthcare involves the process of diagnosis. Countries worldwide advocate for healthcare research due to its efficacy and capacity to assist diverse populations.

View Article and Find Full Text PDF

In this study, a convenient method was proposed for the synthesis of thymine-capped mesoporous silica nanoparticles (MSN) using strong hydrogen bonding in non-protonic solvent. Furthermore, application of the functionalized MSN for the recognition of mercuric ion (Hg) based on a paper-based platform with smartphone-assisted colorimetric detection was developed. The synthesized materials were characterized by techniques including X-ray diffraction (XRD), fourier-transform infrared spectroscopy (FTIR), N adsorption-desorption, particle size analysis, transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!