Objective: Mechanisms of insulin resistance in polycystic ovary syndrome (PCOS) remain ill defined, contributing to sub-optimal therapies. Recognising skeletal muscle plays a key role in glucose homeostasis we investigated early insulin signalling, its association with aberrant transforming growth factor β (TGFβ)-regulated tissue fibrosis. We also explored the impact of aerobic exercise on these molecular pathways.

Methods: A secondary analysis from a cross-sectional study was undertaken in women with (n = 30) or without (n = 29) PCOS across lean and overweight BMIs. A subset of participants with (n = 8) or without (n = 8) PCOS who were overweight completed 12 weeks of aerobic exercise training. Muscle was sampled before and 30 min into a euglycaemic-hyperinsulinaemic clamp pre and post training.

Results: We found reduced signalling in PCOS of mechanistic target of rapamycin (mTOR). Exercise training augmented but did not completely rescue this signalling defect in women with PCOS. Genes in the TGFβ signalling network were upregulated in skeletal muscle in the overweight women with PCOS but were unresponsive to exercise training except for genes encoding LOX, collagen 1 and 3.

Conclusions: We provide new insights into defects in early insulin signalling, tissue fibrosis, and hyperandrogenism in PCOS-specific insulin resistance in lean and overweight women. PCOS-specific insulin signalling defects were isolated to mTOR, while gene expression implicated TGFβ ligand regulating a fibrosis in the PCOS-obesity synergy in insulin resistance and altered responses to exercise. Interestingly, there was little evidence for hyperandrogenism as a mechanism for insulin resistance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7219141PMC
http://dx.doi.org/10.1530/EC-19-0551DOI Listing

Publication Analysis

Top Keywords

insulin resistance
20
insulin signalling
16
women pcos
12
exercise training
12
insulin
8
skeletal muscle
8
early insulin
8
tissue fibrosis
8
aerobic exercise
8
lean overweight
8

Similar Publications

Estimated Glucose Disposal Rate predicts the risk of incident Metabolic dysfunction-associated steatotic liver disease.

Endocr Pract

January 2025

Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.

Objectives: There is a relationship between insulin resistance and metabolic dysfunction-associated steatotic liver disease (MASLD) and the estimated glucose disposal rate (eGDR) has been reported as a surrogate marker of insulin resistance. This study aimed to investigate the association between eGDR and the incident MASLD, and compare the ability to predict incident MASLD with other insulin resistance markers.

Methods: Retrospective cohort data from a health check-up program were analyzed.

View Article and Find Full Text PDF

Dissection of type 2 diabetes: a genetic perspective.

Lancet Diabetes Endocrinol

January 2025

Université de Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France; Department of Metabolism, Imperial College London, London, UK. Electronic address:

Diabetes is a leading cause of global mortality and disability, and its economic burden is substantial. This Review focuses on type 2 diabetes, which makes up 90-95% of all diabetes cases. Type 2 diabetes involves a progressive loss of insulin secretion often alongside insulin resistance and metabolic syndrome.

View Article and Find Full Text PDF

Background: Maintaining optimum glycaemic control is essential to reducing comorbidity and mortality in diabetes. However, research indicates that <50 % of patients achieve their target HbA1c ranges. Laboratory studies suggest that olive leaf extract (OLE) may improve glycaemic control, however clinical studies in persons with diabetes are lacking.

View Article and Find Full Text PDF

Comprehensive review of animal models in diabetes research using chemical agents.

Lab Anim

January 2025

Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.

Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.

View Article and Find Full Text PDF

Sedentary lifestyles and prolonged physical inactivity are often linked to poor mental and physical health as well as an increased risk of a number of chronic illnesses, including cancer, obesity, type 2 diabetes, and cardiovascular problems. Metabolic Syndrome (MetS), as the new disease, has emerged as the world's leading cause of illness. Despite having its roots in the West, this issue has now completely globalized due to the development of the Western way of life throughout the world.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!