Objective: Expansion of visceral adipose tissue (VAT) and metabolic inflammation are consequences of obesity and associated with type 2 diabetes (T2DM). Metabolically activated adipose tissue macrophages (ATMs) undergo qualitative and quantitative changes that influence their inflammatory responses. How these cells contribute to insulin resistance (IR) in humans is not well understood. Cholesterol 25-Hydroxylase (CH25H) converts cholesterol into 25-Hydroxycholesterol (25-HC), an oxysterol that modulates immune responses. Using human and murine models, we investigated the role of CH25H in metabolic inflammation.
Methods: We performed transcriptomic (RNASeq) analysis on the human whole AT biopsies and sorted ATMs from obese non-diabetic (NDM) and obese diabetic (DM) subjects to inquire if CH25H was increased in DM. We challenged mice lacking Ch25h with a high-fat diet (HFD) to characterize their metabolic and immunologic profiling. Ch25h KO mice and human adipose tissue biopsies from NDM and DM subjects were analyzed. LC-MS was conducted to measure 25-HC level in AT. In vitro analysis permitted us to investigate the effect of 25-HC on cytokine expression.
Results: In our RNASeq analysis of human visceral and subcutaneous biopsies, gene pathways related to inflammation were increased in obese DM vs. non-DM subjects that included CH25H. CH25H was enriched in the stromal vascular fraction of human adipose tissue and highly expressed in CD206 human ATMs by flow cytometry analysis. We measured the levels of the oxysterols, 25-HC and 7α25diHC, in human visceral adipose tissue samples and showed a correlation between BMI and 25-HC. Using mouse models of diet-induced obesity (DIO), we found that HFD-induced Ch25h expression in eWAT and increased levels of 25-HC in AT. On HFD, Ch25h KO mice became obese but exhibited reduced plasma insulin levels, improved insulin action, and decreased ectopic lipid deposit. Improved insulin sensitivity in Ch25h KO mice was due to attenuation of CD11c adipose tissue macrophage infiltration in eWAT. Finally, by testing AT explants, bone marrow-derived macrophages (BMDMs) and SVF cells from Ch25h deficient mice, we observed that 25-HC is required for the expression of pro-inflammatory genes. 25-HC was also able to induce inflammatory genes in preadipocytes.
Conclusions: Our data suggest a critical role for CH25H/25-HC in the progression of meta-inflammation and insulin resistance in obese humans and mouse models of obesity. In response to obesogenic stimuli, CH25H/25-HC could exert a pro-inflammatory role.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267735 | PMC |
http://dx.doi.org/10.1016/j.molmet.2020.100983 | DOI Listing |
Obes Surg
January 2025
Department of Surgery, Minimally Invasive Surgery Research Center, Division of Minimally Invasive and Bariatric Surgery, School of Medicine, Rasool‑E Akram Hospital, Iran University of Medical Sciences, Tehran, Iran.
Background: Obesity, characterized by excessive adipose tissue, is associated with chronic low-grade inflammation and elevated inflammatory markers such as high-sensitivity C-reactive protein (hs-CRP). This inflammation is linked to obesity-associated medical problems, including cardiovascular diseases. One anastomosis gastric bypass (OAGB) has emerged as an effective metabolic and bariatric surgical procedure to address severe obesity and its associated inflammatory state.
View Article and Find Full Text PDFEur J Surg Oncol
December 2024
Zuyderland Medical Centre Sittard/Heerlen, the Netherlands.
Background: For many colorectal cancer patients, primary surgery is the standard care of treatment. Further insights in perioperative care are crucial. The aim of this study is to assess the prognostic value of body composition for postoperative complications after laparoscopic and open colorectal surgery.
View Article and Find Full Text PDFDiabetol Metab Syndr
January 2025
Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation-Fiocruz, Campus Maré. Centro de Pesquisa, Inovação e Vigilância em Covid-19 e Emergências Sanitárias. Endereço: Av. Brasil, 4036-Bloco 2. Manguinhos, Rio de Janeiro, RJ, CEP 21040-361, Brazil.
Introduction: Metabolic syndrome (MetS) is a metabolic disorder related to obesity and insulin resistance and is the primary determinant of the development of low-intensity chronic inflammation. This continuous inflammatory response culminates in neuroimmune-endocrine dysregulation responsible for the metabolic abnormalities and morbidities observed in individuals with MetS. Events such as the accumulation of visceral adipose tissue, increased plasma concentrations of free fatty acids, tissue hypoxia, and sympathetic hyperactivity in individuals with MetS may contribute to the activation of the innate immune response, which compromises cerebral microcirculation and the neurovascular unit, leading to the onset or progression of neurodegenerative diseases.
View Article and Find Full Text PDFJ Transl Med
January 2025
Research Unit NeuroBiology of Diabetes, Helmholtz Munich, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.
Background: Obese subjects undergoing weight loss often fear the Yoyo dieting effect, which involves regaining or even surpassing their initial weight. To date, our understanding of such long-term obesity and weight cycling effects is still limited and often based on only short-term murine weight gain and loss studies. This study aimed to investigate the long-term impacts of weight cycling on glycemic control and metabolic health, focusing on adipose tissue, liver, and hypothalamus.
View Article and Find Full Text PDFChin Med
January 2025
Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.
Methods: HFD-induced obese mice were treated with WMW.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!