Agar has numerous applications in biomedical and biopharmaceutical fields in gel form. However the hard and tough nature of agar films and their vulnerability to microbial attacks prevent their usage in wound dressing applications. In this work, agar - locust bean gum (LBG) and agar - salep films were prepared for the first time to improve its physical, antimicrobial and cell viability properties. LBG and salep incorporated films resulted in higher antimicrobial and cell viability properties than agar films, which are very important in wound dressing applications. Agar - LBG films had higher water vapor permeabilities and were insoluble in water and in phosphate buffer solutions. Salep incorporation resulted in lower water vapor permeability and films were soluble in both media. All films were transparent, allowing good observability. With LBG and salep addition, lower tensile strength films were obtained and thicknesses of all films were appropriate for wound dressing applications. Due to their solubility, agar - salep films can be preferred especially for the cases where removal from the wound without damaging the tissue structure is a priority.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2020.03.214 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!