A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate. | LitMetric

Improving osteogenesis of calcium phosphate bone cement by incorporating with manganese doped β-tricalcium phosphate.

Mater Sci Eng C Mater Biol Appl

School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China; National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, China; Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, China. Electronic address:

Published: April 2020

Lack of osteogenic capacity limits the bone repair effect of calcium phosphate cement (CPC). In present work, bivalent manganese ion (Mn) doped β-tricalcium phosphate (Mn-TCP) was incorporated into CPC to enhance its osteogenic ability. The incorporation of Mn-TCP promoted the hydration reaction of CPC. The presence of Mn made the hydration products finer. When adding 10 wt% Mn-TCP in CPC (Mn-CPC-1), the setting time of CPC was shortened, whereas the strength and injectability were not changed. Mouse Bone marrow mesenchymal stem cells (mBMSCs) on Mn-CPC-1 and CPC with 20 wt% Mn-TCP (Mn-CPC-2) presented better adhesion and spreading behaviors. Besides, Mn-CPC-1 promoted the gene levels of ALP, Col-I and OC while Mn-CPC-2 promoted the gene levels of Runx2 and OC. Cellular behaviors were related to two points: one was the increase of adsorption capacity of proteins (e.g. BSA) after changing the surface properties of bone cements; and the other was the biological role of Mn released from CPC in osteogenesis. All the results indicated that CPC incorporated with 10 wt% Mn-TCP has good osteogenesis and proper physicochemical properties, which will be a prospective biomaterial applying in the area of bone regeneration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110481DOI Listing

Publication Analysis

Top Keywords

calcium phosphate
8
doped β-tricalcium
8
β-tricalcium phosphate
8
cpc
8
10 wt% mn-tcp
8
promoted gene
8
gene levels
8
bone
5
mn-tcp
5
improving osteogenesis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!