A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fabrication and evaluation of modified poly(ethylene terephthalate) microfibrous scaffolds for hepatocyte growth and functionality maintenance. | LitMetric

For hepatocyte culture in vitro, the surface feature of utilized scaffolds exerts a direct impact on cell adhesion, growth and differentiated functionality. Herein, to regulate hepatocyte growth and differentiated functionality, modified microfibrous scaffolds were fabricated by surface grafting monoamine terminated lactobionic lactone (L-NH) and gelatin onto non-woven poly(ethylene terephthalate) (PET) fibrous substrate (PET-Gal and PET-Gel), respectively. The physicochemical properties of PET scaffolds before and after modification were characterized. Upon 15-day culture, the effects of modified PET scaffolds on growth and differentiated functionality of human induced hepatocytes (hiHeps) were evaluated, compared with that of control without modification. Results demonstrated that both L-NH and gelatin modifications improved scaffold properties including hydrophilicity, water uptake ratio, stiffness and roughness, resulting in efficient cell adhesion, ~20-fold cell expansion and enhanced differentiated functionality. After culture for 15 days, PET-Gal cultured cells formed aggregates, displaying better cell viability and significantly higher differentiated functionality regarding albumin secretion, urea synthesis, phases I (cytochrome P450, CYP1A1/2 and CYP3A4) and II (uridine 5'-diphosphate glucuronosyltransferases, UGT) enzyme activity, biliary excretion and detoxification ability (ammonia elimination and bilirubin conjugation), compared with PET and PET-Gel cultured ones. Hence, as a three-dimensional (3D) microfibrous scaffold, PET-Gal promotes hiHeps growth and differentiated functionality maintenance, which is promisingly utilized in bioartificial liver (BAL) bioreactors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2019.110523DOI Listing

Publication Analysis

Top Keywords

differentiated functionality
24
growth differentiated
16
polyethylene terephthalate
8
microfibrous scaffolds
8
hepatocyte growth
8
functionality maintenance
8
cell adhesion
8
l-nh gelatin
8
pet scaffolds
8
functionality
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!