Background: While there is evidence of both purifying and balancing selection in immune defense genes, large-scale genetic diversity in antimicrobial peptides (AMPs), an important part of the innate immune system released from dermal glands in the skin, has remained uninvestigated. Here we describe genetic diversity at three AMP loci (Temporin, Brevinin and Palustrin) in two ranid frogs (Rana arvalis and R. temporaria) along a 2000 km latitudinal gradient. We amplified and sequenced part of the Acidic Propiece domain and the hypervariable Mature Peptide domain (~ 150-200 bp) in the three genes using Illumina Miseq and expected to find decreased AMP genetic variation towards the northern distribution limit of the species similarly to studies on MHC genetic patterns.

Results: We found multiple loci for each AMP and relatively high gene diversity, but no clear pattern of geographic genetic structure along the latitudinal gradient. We found evidence of trans-specific polymorphism in the two species, indicating a common evolutionary origin of the alleles. Temporin and Brevinin did not form monophyletic clades suggesting that they belong to the same gene family. By implementing codon evolution models we found evidence of strong positive selection acting on the Mature Peptide. We also found evidence of diversifying selection as indicated by divergent allele frequencies among populations and high Theta k values.

Conclusion: Our results suggest that AMPs are an important source of adaptive diversity, minimizing the chance of microorganisms developing resistance to individual peptides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7106915PMC
http://dx.doi.org/10.1186/s12863-020-00839-1DOI Listing

Publication Analysis

Top Keywords

latitudinal gradient
12
genetic diversity
8
temporin brevinin
8
mature peptide
8
genetic
5
antimicrobial peptide
4
peptide sequence
4
sequence variation
4
variation latitudinal
4
gradient anurans
4

Similar Publications

Ectothermic arthropods, like ticks, are sensitive indicators of environmental changes, and their seasonality plays a critical role in tick-borne disease dynamics in a warming world. Juvenile tick phenology, which influences pathogen transmission, may vary across climates, with longer tick seasons in cooler climates potentially amplifying transmission. However, assessing juvenile tick phenology is challenging in climates where desiccation pressures reduce the time ticks spend seeking blood meals.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the evolution of genomic variation is essential for creating effective conservation strategies for threatened species, focusing on connectivity, demographic changes, and environmental adaptation.
  • The study analyzed genomic variation in Fraxinus latifolia, a riparian tree facing threats from the invasive emerald ash borer, by sequencing over 1000 individuals from 61 populations.
  • Results showed strong population structure and low genetic diversity, suggesting that this patchy distribution could hinder the species' long-term evolutionary potential, underscoring the importance of conserving genomic diversity for future restoration efforts.
View Article and Find Full Text PDF

Insect herbivory has attracted enormous attention from researchers due to its effects on plant fitness. However, there remain questions such as what are the most important leaf traits that determine consumption levels, whether there are latitudinal gradients in herbivore pressure, or whether there are differences in susceptibility between hybrids and their parental species. In this work we address all these issues in two species of Mediterranean Quercus (Q.

View Article and Find Full Text PDF

AbstractLarge-scale temporal and spatial biodiversity patterns have traditionally been explained by multitudinous particular factors and a few theories. However, these theories lack sufficient generality and do not address fundamental interrelationships and coupled dynamics among resource availability, community abundance, and species richness. We propose the equilibrium theory of biodiversity dynamics (ETBD) to address these linkages.

View Article and Find Full Text PDF

Coral populations across the Great Barrier Reef (GBR) could rapidly adapt to the warming climate if they have standing genetic variation for thermal tolerance. Here, we describe a locus likely involved in latitudinal adaptation of Acropora millepora. This locus shows a steep latitudinal gradient of derived allele frequency increasing at higher latitudes, and harbours a cluster of eight tandemly repeated Δ9-desaturase genes adjacent to a region in the genome where a hard selective sweep likely occurred.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!