enhances freezing tolerance and post-thaw recovery in by stimulating the expression of genes.

Plant Signal Behav

Hubei Collaborative Innovation Center for Grain Industry/Engineering Research Centre of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China.

Published: April 2020

The root endophytic fungus plays an important role in increasing abiotic stress tolerance of its host plants. To explore the impact of on freezing tolerance, seedlings were co-cultivated with exposed to -6°C for 6 h. Freezing stress decreased the survival rate, electrolyte leakage, leaf temperature, water potential and chlorophyll fluorescence of plants in comparison to the controls. colonizion reduced the negative effects of freezing, and the plants contained also higher amounts of soluble proteins, proline and ascorbic acid during the post-thaw recovery period (4°C; 12 h). In contrast, the HO and malondialdehyde levels were reduced in seedlings colonized by the fungus. The brassinolide (BR) and abscisic acid (ABA) levels dramatically increased and the transcript levels of several crucial freezing-stress related genes (s, s, and ) were higher in inoculated plants during the post-thaw recovery period. Finally, inocculated mutants impaired in the freezing tolerance response (such as for INDUCER OF CBF EXPRESSION1, a crucial basic helix-loop-helix transcription factor for the cold-response pathway in , -2, -3 for C-REPEAT-Binding Factor, and for COLD-REGULATED and encoding the SUMO E3 LIGASE) showed better survival rates and higher expression levels of freezing-related target genes after freezing compared to the inocculated controls. Our results demonstrate that confers freezing tolerance and better post-thaw recovery in , and stimulates the expression of several genes involved in the CBF-dependent pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7194378PMC
http://dx.doi.org/10.1080/15592324.2020.1745472DOI Listing

Publication Analysis

Top Keywords

freezing tolerance
16
post-thaw recovery
16
expression genes
8
recovery period
8
freezing
6
tolerance
5
enhances freezing
4
post-thaw
4
tolerance post-thaw
4
recovery
4

Similar Publications

Background: The aim of this study was to investigate the survival of and in decaying wild boar tissue and assess their freezing tolerance in experimentally infected animals.

Methods: The present study was conducted in Buenos Aires City, Argentina during the 2018-2019 period. Two wild boars were used, one infected with 20,000 muscle larvae (ML) of and the other with .

View Article and Find Full Text PDF

AmChi7, an AmWRKY59 - Activated chitinase, was involved in the adaption to winter climate in Ammopiptanthusmongolicus.

Plant Physiol Biochem

December 2024

Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China. Electronic address:

Chitinases are enzymes that hydrolyze β-1,4-glycosidic bonds in chitin. Previous studies have shown that several chitinases accumulated significantly in A. mongolicus, suggesting that chitinases might participate in the adaptation to winter climate in Ammopiptanthus mongolicus.

View Article and Find Full Text PDF

Lonicera caerulea genome reveals molecular mechanisms of freezing tolerance and anthocyanin biosynthesis.

J Adv Res

December 2024

Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin 150040, China; College of Life Science, Northeast Forestry University, Harbin 150040, China. Electronic address:

Introduction: Lonicera caerulea L. (blue honeysuckle) is a noteworthy fleshy-fruited tree and a prominent medicinal plant, which possesses notable characteristics such as exceptional resilience to winter conditions and early maturation, and the richest source of functional anthocyanins, particularly cyanidin-3-glucoside. The molecular mechanisms responsible for its freezing tolerance and anthocyanin biosynthesis remain largely unknown.

View Article and Find Full Text PDF

ScDREBA5 Enhances Cold Tolerance by Regulating Photosynthetic and Antioxidant Genes in the Desert Moss Syntrichia caninervis.

Plant Cell Environ

December 2024

State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.

Extreme cold events, becoming more frequent, affect plant growth and development. Much is known about C-repeat binding transcription factor (CBF)-dependent cold-signaling pathways in plants. However, the CBF-independent regulatory pathway in angiosperms is unclear, and the cold-signaling pathways in non-angiosperms lacking CBFs, such as the extremely cold-tolerant desert moss Syntrichia caninervis, are largely unknown.

View Article and Find Full Text PDF

High-throughput identification of Prunus mume freezing-tolerance genes based on yeast screening system and functional verification of PmRCI2-3 in Arabidopsis.

Plant Physiol Biochem

December 2024

Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China. Electronic address:

Prunus mume tops the ten most famous flowers of China with high ornamental value, and low temperature is the main factor limiting its northward migration. Cold resistance improvement is one of the important breeding directions of Rosaceae ornamental plants, especially the Prunus mume. Here, 29 genes from P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!