The semiconductor manufacturing sector plans to introduce III/V film structures (eg, gallium arsenide (GaAs), indium arsenide (InAs) onto silicon wafers due to their high electron mobility and low power consumption. Aqueous solutions generated during chemical and mechanical planarization of silicon wafers can contain a mixture of metal oxide nanoparticles (NPs) and soluble indium, gallium, and arsenic. In this work, the cytotoxicity induced by Ga- and In-based NPs (GaAs, InAs, GaO, InO) and soluble III-V salts on human bronchial epithelial cells (16HBE14o-) was evaluated using a cell impedance real-time cell analysis (RTCA) system. The RTCA system provided inhibition data at different concentrations for multiple time points, for example, GaAs (25 mg/L) caused 60% inhibition after 8 hours of exposure and 100% growth inhibition after 24 hours. Direct testing of As(III) and As(V) demonstrated significant cytotoxicity with 50% growth inhibition concentrations after 16-hour exposure (IC) of 2.4 and 4.5 mg/L, respectively. Cell signaling with rapid rise and decrease in signal was unique to arsenic cytotoxicity, a precursor of strong cytotoxicity over the longer term. In contrast with arsenic, soluble gallium(III) and indium(III) were less toxic. Whereas the oxide NPs caused low cytotoxicity, the arsenide compounds were highly inhibitory (IC of GaAs and InAs = 6.2 and 68 mg/L, respectively). Dissolution experiments over 7 days revealed that arsenic was fully leached from GaAs NPs, whereas only 10% of the arsenic was leached out of InAs NPs. These results indicate that the cytotoxicity of GaAs and InAs NPs is largely due to the dissolution of toxic arsenic species.

Download full-text PDF

Source
http://dx.doi.org/10.1177/1091581820914255DOI Listing

Publication Analysis

Top Keywords

gaas inas
12
human bronchial
8
bronchial epithelial
8
epithelial cells
8
real-time cell
8
silicon wafers
8
rtca system
8
inhibition hours
8
growth inhibition
8
inas nps
8

Similar Publications

InAs semiconductor quantum dots (QDs) emitting in the near-infrared are promising platforms for on-demand single-photon sources and spin-photon interfaces. However, the realization of quantum-photonic nanodevices emitting in the telecom windows with similar performance remains an open challenge. In particular, nanophotonic devices incorporating quantum light emitting diodes in the telecom C-band based on GaAs substrates are still lacking due to the relaxation of the lattice constant along the InGaAs graded layer which makes the implementation of electrically contacted devices challenging.

View Article and Find Full Text PDF
Article Synopsis
  • - A new scintillation material featuring InAs quantum dots in a GaAs matrix was developed and tested for its efficiency with various types of radiation.
  • - The research introduced a design methodology for an integrated photodetector with low defect density, optimizing its performance to match the quantum dot emission spectrum using a specialized buffer layer.
  • - Results showed the detector's electron yield for α-particles and photons, with alpha particles yielding 13 electrons/keV and photons yielding between 30-60 electrons/keV, alongside improved radiation hardness of InAs QDs in AlGaAs compared to those in GaAs.
View Article and Find Full Text PDF

Integration of graphene and quantum dots (QD) is a promising route to improved material and device functionalities. Underlying the improved properties are alterations in carrier dynamics within the graphene/QD heterostructure. In this study, it is shown that graphene functions as a carrier redistribution and supply channel when integrated with InAs QDs.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers successfully integrated InAs/GaAs quantum dot lasers with an AlGaN/GaN-on-sapphire waveguide platform using micro-transfer printing.
  • The design allows for easy alignment of the lasing modes with the passive waveguide modes, achieving a TE propagation loss of 4.5 dB/cm for 4 μm wide waveguides.
  • This integration showcases the potential of GaN for photonics applications, with a coupled output power of 1.5 mW at 70°C and 100 mA, marking a significant advancement in laser integration technology.
View Article and Find Full Text PDF

The long-wave infrared (LWIR) interband cascade detector with type-II superlattices (T2SLs) and a gallium-free ("Ga-free") InAs/InAsSb (x = 0.39) absorber was characterized by photoluminescence (PL) and spectral response (SR) methods. Heterostructures were grown by molecular beam epitaxy (MBE) on a GaAs substrate (001) orientation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!