In Vivo Documentation of Stimulus Velocity Tuning of Mechanically Induced Reflex Cough.

Physiol Res

Research Unit EA 3450 DevAH-Development, Adaptation and Handicap, Campus Biologie Santé, University of Lorraine, Vandoeuvre-les-Nancy,

Published: March 2020

In order to clear airways and lungs defensive reflexes are provoked rather by the dynamic phase of mechanical stimulus. It is speculated that provocation of defensive response depends not only on stimulus duration but also on stimulus velocity. Fourteen adult rabbits were anaesthetized and tracheotomized. Mechanical stimulus was provoked by a mechanical probe introduced through the tracheotomy and rotated by a small electrical motor using a rotational velocity of 40 rpm/s and 20 rpm/s. Threshold, incidence and intensity of cough reflex (CR) were analyzed for each animal. Statistical comparisons between two velocities were performed using Friedman nonparametric test for repeated measurements. Results are median (25-75 %). The threshold of CR was significantly increased (p=0.005) from 350 ms (300-500 ms) to 550 ms (350-1150 ms) and the incidence of cough reflex was significantly reduced (p=0.002) from 50 % (19 50 %) to 0 % (0-25 %) when the rotational velocity of the mechanical probe was reduced by half. The findings of this study are of interest as they show that protective reflex cough, an important mechanism that allows clearing airways even during sleep or anesthesia, is tuned by mechanical stimulus velocity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604052PMC
http://dx.doi.org/10.33549/physiolres.934397DOI Listing

Publication Analysis

Top Keywords

stimulus velocity
12
mechanical stimulus
12
reflex cough
8
mechanical probe
8
rotational velocity
8
cough reflex
8
stimulus
6
velocity
5
mechanical
5
vivo documentation
4

Similar Publications

Pupil responses are commonly used to provide insight into visual perception, autonomic control, cognition, and various brain disorders. However, making inferences from pupil data can be complicated by nonlinearities in pupil dynamics and variability within and across individuals, which challenge the assumptions of linearity or group-level homogeneity required for common analysis methods. In this study, we evaluated luminance evoked pupil dynamics in young healthy adults (n = 10, M:F = 5:5, ages 19-25 years) by identifying nonlinearities, variability, and conserved relationships across individuals to improve the ability to make inferences from pupil data.

View Article and Find Full Text PDF

Middle Ear Mechanics in the Barn Owl.

J Morphol

January 2025

Department of Zoology, Denver Museum of Nature & Science, Denver, Colorado, USA.

The barn owl is a common research subject in auditory science due to its exceptional capacity for high frequency hearing and superb sound source localization capabilities. Despite longstanding interest in the auditory performance of barn owls, the function of its middle ear has attracted remarkably little attention. Here, we report the middle ear transfer function measured by laser Doppler vibrometry and direct measurements of inner ear pressures.

View Article and Find Full Text PDF

Bone tissue is a biological composite material with a complex hierarchical structure that could continuously adjust its internal structure to adapt to the alterations in the external load environment. The fluid flow within bone is the main route of osteocyte metabolism, and the pore pressure as well as the fluid shear stress generated by it are important mechanical stimuli perceived by osteocytes. Owing to the irregular multiscale structure of bone tissue, the fluid stimulation that lacunar-canalicular network (LCN) in different regions of the tissue underwent remained unclear.

View Article and Find Full Text PDF

CAR-T cells are more affected than T lymphocytes by mechanical constraints: A microfluidic-based approach.

Life Sci

December 2024

Department of Mechanical Engineering, University of Zaragoza, Zaragoza, Spain; Instituto de Investigación en Ingeniería de Aragón (I3A), Zaragoza, Spain; Aragón Institute of Healthcare Research (IIS Aragón), Zaragoza, Spain. Electronic address:

Aims: CAR-T cell therapy has attracted considerable attention in recent years owing to its well-known efficacy against haematopoietic malignancies. Nevertheless, this immunotherapy fails against solid tumours due to hostile conditions found in the tumour microenvironment. In this context, many relevant biochemical factors have been thoroughly studied, but crucial mechanical cues have been underestimated.

View Article and Find Full Text PDF

Peripheral endothelial function, which accounts for the variability in shear stimulus, can be assessed using shear-mediated dilation normalized to the increased shear stimulus. Similarly, shear-mediated dilation of the internal carotid artery (ICA), an index of cerebrovascular endothelial function, should be normalized to increased shear stimulus. However, this approach has not yet been validated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!