Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The development of targeted anticancer drugs has been one of the most challenging goals of current research. Eukaryotic translation initiation factor 4E (eIF4E) is an oncogene that stimulates mRNA translation via binding to the 5' endcap structure. It is well documented that eIF4E is overexpressed in many cancers including breast, prostate, head and neck, and stomach malignancies and leads to oncogenic transformation and metastasis. One approach to block eIF4E function in cancer cells is based on the disruption of the interaction between eIF4E and the 5' mRNA cap structure using cap analog inhibitors. Since analogs are cell-impermeable due to their anionic nature, we used a cell penetrating peptide (CPP) for delivery of model cap analogs into cancer cells. The human immunodeficiency virus I (HIV-1) transactivator of transcription derived peptide (TAT) was conjugated with the analogs mGMP and mGpppG using click chemistry methodology. We observed that both conjugates (mGMP-TAT and mGpppG-TAT), contrary to TAT alone, did not translocate through the artificial phospholipid membrane of giant unilamellar vesicles. This suggests that passive transport is not the mechanism by which translocation of cap analogs occurs. In contrast, synthesized fluorescently labeled mGpppG-TAT translocated into the human breast adenocarcinoma cancer cell line MCF-7. Furthermore, we demonstrated that mGMP-TAT and mGpppG-TAT inhibited cap-dependent translation up to 30% both and while simultaneously not affecting cell growth and viability. These results demonstrate the usefulness of cell penetration peptides as carriers for the internalization of cap analogs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.0c00080 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!