Two-dimensional (2D) Janus structures, which are totally different from prevailing 2D structures, are more interesting for photocatalytic water splitting. Here we proposed some inartificial 2D GeSe Janus structures. Excellent photocatalytic properties are revealed: (a) GeSe structures exhibit layer-independent direct gap character with appropriate band gaps of 2.53, 2.22, 2.11, and 2.03 eV for monolayered, bilayered, triple-layered, and four-layered structures, respectively. (b) Band edge positions of these 2D structures are suitable for the driving of the evolution reaction of water splitting. (c) More importantly, owning to intrinsic electric polarization, the charge densities of the valence band maximum (VBM) and the conduction band minimum (CBM) of triple-layered and four-layered GeSe structures can be notably separated. (d) In addition, we also observed that these 2D structures can possess rather pronounced optical absorption in the visible light region. This work discloses some inartificial 2D Janus structures whose fascinating properties render them as promising photocatalysts for water splitting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.0c00190 | DOI Listing |
Int J Pharm
December 2024
School of Life Science and Technology, Kunming University of Science and Technology, China. Electronic address:
In tumor treatment, the sequence and timing of drug action have a large influence on therapeutic efficacy. Multi-drug sequential release systems (MDSRS) enable the sequential and/or on-demand release of multiple drugs following the single administration of a therapeutic agent. Several researchers have explored MDSRS, providing fresh strategies for synergistic cancer therapy.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Materials Science and Engineering, Peking University, Beijing 1008711, P. R. China.
Intelligent soft robots that integrate both structural color and controllable actuation ability have attracted substantial attention for constructing biomimetic systems, biomedical devices, and soft robotics. However, simultaneously endowing single-layer cholesteric liquid crystal elastomer (CLCE) soft actuators with reversible 3D deformability and vivid structural color changes is still challenging. Herein, a multi-responsive (force, heat and light) single-layer 3D deformable soft actuator with vivid structural color-changing ability is realized through the reduced graphene oxide (RGO) deposition-induced Janus structure of the CLCE using a precisely-controlled evaporation method.
View Article and Find Full Text PDFNanoscale Horiz
January 2025
Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China.
Coordinating the droplet capture, transport, and shedding processes during fog collection to achieve efficient fog collection is a major challenge. In this study, a copper mesh with different wettability was prepared by chemical etching and thiol modification. The Cu(OH) needle structure on the surface of the samples was characterized by FE-SEM and EDS tests, and the surface of the samples was chemically analyzed by infrared and XPS analyses.
View Article and Find Full Text PDFUnderstanding the community structure of the lower respiratory tract microbiome is crucial for elucidating its roles in respiratory tract diseases. However, there are few studies about this topic due to the difficulty in obtaining microbial samples from both healthy and disease individuals. Here, using 744 high-depth metagenomic sequencing data of lower respiratory tract microbial samples from 675 well-phenotyped pigs, we constructed a lung microbial gene catalog containing the largest scale of 10,031,593 nonredundant genes to date, 44.
View Article and Find Full Text PDFBiomaterials
December 2024
Department of Orthopedics, The First Affiliated Hospital of Naval Medical University: Changhai Hospital, Shanghai, 200433, China. Electronic address:
Bacterial implant-associated infections predominantly contribute to the failure of prosthesis implantation. The local biofilm microenvironment (BME), characterized by its hyperacidic condition and high hydrogen peroxide (HO) level, inhibits the host's immune response, thereby facilitating recurrent infections. Here, a Janus PEGylated CuS nanoparticle (CuPen) armed engineered Lactobacillus casei (L.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!