Aims: Lung congestion in patients with heart failure (HF) has traditionally been treated using interventions that reduce pulmonary capillary hydrostatic pressure. The transient receptor potential vanilloid 4 (TRPV4) channel regulates fluid transit across the pulmonary capillary-interface, and represents a novel target to reduce lung water, independent of pulmonary capillary hypertension. This pilot study examined the safety and potential efficacy of TRPV4 blockade as a novel treatment for HF.

Methods And Results: In this randomized, double-blind, placebo-controlled crossover pilot trial, 11 subjects with chronic, compensated HF were treated with a novel TRPV4 antagonist (GSK2798745) or placebo. The primary endpoint was lung diffusing capacity for carbon monoxide (DL ) after 7 days of treatment with GSK2798745 as compared to placebo. Secondary endpoints included additional diffusion parameters, spirometry and safety assessments. Compared to placebo, treatment with GSK2798745 resulted in a trend to improvement in DL (placebo: -0.336 mL/mmHg/min; GSK2798745: +0.458 mL/mmHg/min; treatment difference: +0.793 mL/mmHg/min; 95% confidence interval: -0.925 to 2.512) that was not statistically significant. GSK2798745 was well-tolerated with no serious adverse events.

Conclusion: In this pilot trial, GSK2798745 was found to be safe and well-tolerated, with a trend toward improved gas transfer. Further investigation is warranted in larger studies to determine whether treatment with TRPV4 antagonists or alternative treatments targeting capillary permeability might be effective to improve lung congestion, pulmonary gas transfer and clinical status in patients with acute or chronic HF.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ejhf.1809DOI Listing

Publication Analysis

Top Keywords

pulmonary capillary
12
lung congestion
12
pilot trial
12
capillary permeability
8
reduce lung
8
heart failure
8
treatment gsk2798745
8
compared placebo
8
gas transfer
8
gsk2798745
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!