The study of translation initiation in prokaryotes assumes that there should be a mechanism different from the canonical model, which postulates the formation of the pre-initiation complex through the interaction of the Shine-Dalgarno sequence (SD) at the 5'-end of mRNA and the anti-Shine-Dalgarno site at the 3'-end of 16S rRNA. In this paper we've studied the effect of TPS (Translation-initiation Promoting Site) on β-glucuronidase expression in E. coli cells at different cultivation temperatures. The examined leader sequences were cloned into the pET23c plasmid upstream the β-glucuronidase gene; protein expression was performed in E. coli BL21 (DE3) cells. β-glucuronidase activity was measured in bacterial cell extracts via paranitrophenyl b-D-glucuronide assay. The quantity of expressed protein was measured by Western blotting with following densitometry. It was shown that TPS increases the level of protein expression at stressful conditions (10 °C and 44 °C) 5-8 times compared to control. The combination of TPS and SD sites in the 5'-leader sequence of the mRNA created an enhancer that increased the expression level 2-3.6 times compared to a single SD-sequence. Based on the obtained data and the computer modeling of interaction between 16S rRNA and TPS, we proposed an alternative variation of prokaryotic translation initiation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12033-020-00251-1DOI Listing

Publication Analysis

Top Keywords

protein expression
12
promoting site
8
expression coli
8
coli cells
8
translation initiation
8
16s rrna
8
times compared
8
tps
5
expression
5
translation promoting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!