The Rose Bengal (RB) dye-based photothrombotic stroke (PTS) model has many methodological advantages including consistent location and size of infarct, low mortality, and relatively simple surgical procedures. However, the standard PTS has the caveat of poor responses to tissue-type plasminogen activator (tPA)-mediated lytic treatment, likely as a result of the platelet-rich, fibrin-poor content of the blood clots. Here we tested whether the admixture of thrombin (80 U/kg) and RB dye (50 mg/kg) in the proximal middle cerebral artery (MCA)-targeted PTS will modify the clot composition and elevate the responsiveness to tPA-lytic treatment (Alteplase, 10 mg/kg). Indeed, intravital imaging, immunostaining, and immunoblot analyses showed less-compacted platelet aggregates with a higher fibrin content in the modified thrombin (T) plus RB photothrombotic stroke (T+RB-PTS) model compared with the standard RB-PTS-induced clots. Both RB-PTS and T+RB-PTS showed steady recovery of cerebral blood flow (CBF) in the ischemic border from 1 day after infarction, but without recanalization of the proximal MCA branch. Intravital imaging showed high potency of restoring the blood flow by tPA after single vessel-targeted T+RB-PTS. Further, although intravenous tPA failed to restore CBF or attenuate infarction in RB-PTS, it conferred 25% recovery of CBF and 55% reduction of the infarct size in T+RB-PTS (P < .05) if tPA was administered within 2 hours postphotoactivation. These results suggest that T+RB-PTS produces mixed platelet:fibrin clots closer to the clinical thrombus composition and enhanced the sensitivity to tPA-lytic treatment. As such, the modified photothrombosis may be a useful tool to develop more effective thrombolytic therapies of cerebral ischemia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160278PMC
http://dx.doi.org/10.1182/bloodadvances.2019000782DOI Listing

Publication Analysis

Top Keywords

photothrombotic stroke
12
tpa-lytic treatment
12
fibrin content
8
intravital imaging
8
blood flow
8
t+rb-pts
5
murine photothrombotic
4
stroke model
4
model increased
4
increased fibrin
4

Similar Publications

Stem cell grafting can promote glial repair of adult stroke injuries during the subacute wound healing phase, but graft survival and glial repair outcomes are perturbed by lesion severity and mode of injury. To better understand how stroke lesion environments alter the functions of cell grafts, we employed optical coherence tomography (OCT) to longitudinally image mouse cortical photothrombotic ischemic strokes treated with allogeneic neural progenitor cell (NPC) grafts. OCT angiography, signal intensity, and signal decay resulting from optical scattering were assessed at multiple timepoints across two weeks in mice receiving an NPC graft or an injection of saline at two days after stroke.

View Article and Find Full Text PDF

Guhong injection attenuates brain injury and promotes neuroprotection after acute ischemic stroke.

J Neuroimmunol

December 2024

Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China. Electronic address:

Background And Objectives: Guhong injection (GHI) has multiple components and generates diverse effects, and is mainly used in the treatment of acute ischemic stroke (AIS). The purpose of this study is to explore the multiple effects of GHI in AIS models in mice and the mechanism how they work together to affect the stroke outcome.

Methods: Middle cerebral artery occlusion (MCAO) and photothrombotic stroke models were established with GHI or vehicle.

View Article and Find Full Text PDF

Circular RNA SCMH1 suppresses KMO expression to inhibit mitophagy and promote functional recovery following stroke.

Theranostics

December 2024

Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Pharmacology, School of Medicine, Southeast University, Nanjing, China.

Metabolic dysfunction is one of the key pathological events after ischemic stroke. Disruption of cerebral blood flow impairs oxygen and energy substrate delivery, leading to mitochondrial oxidative phosphorylation dysfunction and cellular bioenergetic stress. Investigating the effects of circSCMH1, a brain repair-related circular RNA, on metabolism may identify novel therapeutic targets for stroke treatment.

View Article and Find Full Text PDF

Non-Invasive Photoacoustic Cerebrovascular Monitoring of Early-Stage Ischemic Strokes In Vivo.

Adv Sci (Weinh)

December 2024

Departments of Convergence IT Engineering, Medical Science and Engineering, Electrical Engineering, and Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Cheongam-ro 77, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea.

Early-stage stroke monitoring enables timely intervention that is crucial to minimizing neuronal damage and increasing the extent of recovery. By monitoring collateral circulation and neovascularization after ischemic stroke, the natural recovery process can be better understood, optimize further treatment strategies, and improve the prognosis. Photoacoustic computed tomography (PACT), a non-invasive imaging modality that captures multiparametric high-resolution images of vessel structures, is well suited for evaluating cerebrovascular structures and their function.

View Article and Find Full Text PDF

Cerebrovascular stroke patients exhibit an increased incidence of cardiac arrhythmias. The pathomechanisms underlying post-traumatic cardiac dysfunction include a surge of catecholamines and an increased systemic inflammatory response, but whether inflammasome activation contributes to cardiac dysfunction remains unexplored. Here, we used a mouse model of photothrombotic stroke (PTS) to investigate the role of inflammasome activation in post-stroke cardiac dysfunction by catecholamines and to evaluate the effectiveness of the inflammasome inhibitor IC100 on inflammasome activation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!