Among vertebrates, turtles have many unique characteristics providing biologists with opportunities to study novel evolutionary innovations and processes. We present here a high-quality, partially phased, and chromosome-level Red-Eared Slider (Trachemys scripta elegans, TSE) genome as a reference for future research on turtle and tetrapod evolution. This TSE assembly is 2.269 Gb in length, has one of the highest scaffold N50 and N90 values of any published turtle genome to date (N50 = 129.68 Mb and N90 = 19 Mb), and has a total of 28,415 annotated genes. We introduce synteny analyses using BUSCO single-copy orthologs, which reveal two chromosome fusion events accounting for differences in chromosome counts between emydids and other cryptodire turtles and reveal many fission/fusion events for birds, crocodiles, and snakes relative to TSE. This annotated chromosome-level genome will provide an important reference genome for future studies on turtle, vertebrate, and chromosome evolution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7186784PMC
http://dx.doi.org/10.1093/gbe/evaa063DOI Listing

Publication Analysis

Top Keywords

annotated chromosome-level
8
reference genome
8
red-eared slider
8
trachemys scripta
8
scripta elegans
8
genome
5
chromosome-level reference
4
genome red-eared
4
turtle
4
slider turtle
4

Similar Publications

is a well-known edible and medicinal fungus with significant economic value. However, the available whole-genome information is lacking for this species. The chromosome-scale reference genome (Monop) and two haploid genomes (Hap1 and Hap2) of , each assembled into 11 pseudochromosomes, were constructed using Illumina, PacBio-HiFi long-read sequencing, and Hi-C technology.

View Article and Find Full Text PDF

Chromosome-level genome assembly of tetraploid Chinese cherry (Prunus pseudocerasus).

Sci Data

January 2025

Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Key Laboratory of Environment Friendly Management on Fruit and Vegetable Pests in North China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.

Chinese cherry belongs to the family Rosaceae, genus Prunus, and has high nutritional and economic value. 'Duiying' is a Chinese cherry variety local to Beijing, and has better performance than sweet cherry in terms of disease resistance. However, disease resistance resources of 'Duiying' have not been fully exploited partially due to the lack of a high-quality genome.

View Article and Find Full Text PDF

Chromosome-level genome assembly and annotation of Japanese anchovy (Engraulis japonicus).

Sci Data

January 2025

State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, Shandong, China.

The Japanese anchovy (Engraulis japonicus), a finfish with the largest biomass of a single species in the Yellow and East China Seas, plays an important pivotal role in converting zooplanktons into high trophic fish in the food web. As a result, the fish is regard as a key species in its habiting ecosystem. However, the lack of genomic resources hampers our understanding of its genetic diversity and differentiation, as well as the evolutionary dynamics.

View Article and Find Full Text PDF

Background: Ticks, hematophagous Acari, pose a significant threat by transmitting various pathogens to their vertebrate hosts during feeding. Despite advances in tick genomics, high-quality genomes were lacking until recently, particularly in the genus Ixodes, which includes the main vectors of Lyme disease.

Results: Here, we present the genome sequences of four tick species, derived from a single female individual, with a particular focus on the European species Ixodes ricinus, achieving a chromosome-level assembly.

View Article and Find Full Text PDF

Mountain ecosystems harbor high levels of biodiversity, but the genetic mechanisms underlying adaptation to harsh alpine conditions remain largely unknown. Bergenia purpurascens (Saxifragaceae) is an important alpine endemic species of the Himalaya-Hengduan Mountains (HHM), with this species being used as a source of medicine and as an ornamental plant. In this study, we generated a high-quality genome assembly comprising scaffolds representing the 17 chromosomes, with a total length of 650.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!