Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examine the applicability of urea solutions as a novel cost-effective chemical for enhanced oil recovery processes. Two sandpack flooding experiments were conducted using 5 and 10 wt % urea solutions. Another flooding experiment was also carried out using the same sandpack with fresh water and used as a reference. Supporting experiments such as interfacial tension (IFT), viscosity of water in oil (W/O) emulsions, total acid number (TAN), and Fourier-transform infrared (FTIR) spectroscopy were conducted to confirm the generation of in situ surfactants by reacting urea solutions with the naphthenic acids in bitumen and evaluate their impact on the oil recovery. The analyses of FTIR, IFT, TAN, and viscosity measurements support the generation of in situ surfactants that leads to the formation of stable water in oil emulsions and hence a more stable displacement front resulting in higher oil recovery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098043 | PMC |
http://dx.doi.org/10.1021/acsomega.0c00117 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!