Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional materials (2DMs) have high potential in gas sensing, due to their large surface-to-volume ratio. However, most sensors based on 2DMs suffer from the lack of a steady state during gas exposure, hampering sensor calibration. Here, we demonstrate that analysis of the time differential of the signal output enables the calibration of chemiresistors based on platinum or tungsten diselenide (PtSe, WSe) and molybdenum disulfide (MoS), which present nonstationary behavior. 2DMs are synthesized by thermally assisted conversion of predeposited metals on a silicon/silicon dioxide substrate and therefore are integrable with standard complementary metal-oxide semiconductor (CMOS) technology. We analyze the behavior of the sensors at room temperature toward nitrogen dioxide (NO) in a narrow range from 0.1 to 1 ppm. This study overcomes the problem of the absence of steady-state signals in 2DM gas sensors and thus facilitates their usage in this highly important application.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7098003 | PMC |
http://dx.doi.org/10.1021/acsomega.9b04325 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!