Understanding the neural mechanisms associated with time to contact (TTC) estimation is an intriguing but challenging task. Despite the importance of TTC estimation in our everyday life, few studies have been conducted on it, and there are still a lot of unanswered questions and unknown aspects of this issue. In this study, we intended to address one of these unknown aspects. We used independent component analysis to systematically assess EEG substrates associated with TTC estimation using two experiments: (1) transversal motion experiment (when a moving object passes transversally in the frontoparallel plane from side to side in front of the observer), and (2) head-on motion experiment (when the observer is on the motion path of the moving object). We also studied the energy of all EEG sources in these two experiments. The results showed that brain regions involved in the transversal and head-on motion experiments were the same. However, the energy used by some brain regions in the head-on motion experiment, including some regions in left parietotemporal and left frontal lobes, was significantly higher than the energy used by those regions in the transversal motion experiment. These brain regions are dominantly associated with different kinds of visual attention, integration of visual information, and responding to visual motion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7090120 | PMC |
http://dx.doi.org/10.1007/s11571-019-09563-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!