Our understanding of the general principles of the polymodal regulation of transient receptor potential (TRP) ion channels has grown impressively in recent years as a result of intense efforts in protein structure determination by cryo-electron microscopy. In particular, the high-resolution structures of various TRP channels captured in different conformations, a number of them determined in a membrane mimetic environment, have yielded valuable insights into their architecture, gating properties and the sites of their interactions with annular and regulatory lipids. The correct repertoire of these channels is, however, organized by supramolecular complexes that involve the localization of signaling proteins to sites of action, ensuring the specificity and speed of signal transduction events. As such, TRP ankyrin 1 (TRPA1), a major player involved in various pain conditions, localizes into cholesterol-rich sensory membrane microdomains, physically interacts with calmodulin, associates with the scaffolding A-kinase anchoring protein (AKAP) and forms functional complexes with the related TRPV1 channel. This perspective will contextualize the recent biochemical and functional studies with emerging structural data with the aim of enabling a more thorough interpretation of the results, which may ultimately help to understand the roles of TRPA1 under various physiological and pathophysiological pain conditions. We demonstrate that an alteration to the putative lipid-binding site containing a residue polymorphism associated with human asthma affects the cold sensitivity of TRPA1. Moreover, we present evidence that TRPA1 can interact with AKAP to prime the channel for opening. The structural bases underlying these interactions remain unclear and are definitely worth the attention of future studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7081373PMC
http://dx.doi.org/10.3389/fphys.2020.00189DOI Listing

Publication Analysis

Top Keywords

supramolecular complexes
8
pain conditions
8
trpa1
5
proximal c-terminus
4
c-terminus serves
4
serves signaling
4
signaling hub
4
hub trpa1
4
trpa1 channel
4
channel regulation
4

Similar Publications

Luminescent Iridium-Terpyridine Complexes with Various Bis-Cyclometalated Ligands.

Molecules

January 2025

Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue 690-8504, Shimane, Japan.

A series of luminescent bis-cyclometalated iridium complexes with 2,2':6',2″-terpyridine (tpy), [Ir()(tpy)]PF ( = 2-phenylpyridinate (ppy) for ; benzo[h]quinolinate (bzq) for ; 1-phenylisoquinolinate (piq) for ; and 2-phenylbenzothiazolate (pbt) for ), have been synthesized and structurally characterized. Single-crystal X-ray diffraction analyses reveal that the tpy ligands of - are coordinated to the iridium center in a bidentate fashion, and the uncoordinated pendant pyridine rings in the tpy ligands of - form intramolecular π-π stacking interactions with a phenyl moiety of ligands. In addition, the pendant pyridine ring in the tpy ligand of forms an intramolecular hydrogen bonding interaction, unlike in -.

View Article and Find Full Text PDF

The study of structure-activity relationships is a top priority in the development of nontraditional luminescent materials. In this work, nonconjugated polyurethanes (PUs) with full-color emission (red, green, and blue) are easily obtained by control of the diol monomer structure and the polymerization conditions. Selected diol monomers introduced single, double, or triple bond repeating units into the main chain of the PUs, in order to understand how unsaturated bonds and H-bonds affect their luminescence from a molecular orbital viewpoint.

View Article and Find Full Text PDF

All-carbon supramolecular complexation of a bilayer molecular nanographene with [60] and [70]fullerenes.

Org Chem Front

December 2024

Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid Av. Complutense S/N 28040 Madrid Spain

Supramolecular chemistry of carbon-based materials provides a variety of chemical structures with potential applications in materials science and biomedicine. Here, we explore the supramolecular complexation of fullerenes C and C, highlighting the ability of molecular nanographene tweezers to capture these structures. The binding constant for the CNG-1⊃C complex was significantly higher than for CNG-1⊃C, showing a clear selectivity for the more π-extended C.

View Article and Find Full Text PDF

Ring-in-Ring Assembly Facilitates the Synthesis of a [12]Cycloparaphenylene ABC-Type [3]Catenane.

Angew Chem Int Ed Engl

January 2025

Henan University, Colleg of Chemistry and Molecular Sciences, Jingmin, 475004, Kaifeng, CHINA.

Cycloparaphenylenes (CPPs) represent a significant challenge for the synthesis of mechanically interlocked architectures, because they lack heteroatoms, which precludes traditional active and passive template methods. To circumvent this problem and explore the fundamental and functional properties of CPP rotaxanes and catenanes, researches have resorted to unusual non-covalent and even to labor-intensive covalent template approaches. Herein, we report a ring-in-ring non-covalent template strategy that makes use of the surprisingly strong non-covalent inclusion of crown ethers into suitably sized CPPs.

View Article and Find Full Text PDF

The morphology of nanodrugs is of utmost importance in photothermal therapy because it directly influences their physicochemical behavior and biological responses. However, clarifying the inherent relationship between morphology and the resultant properties remains challenging, mainly due to the limitations in the flexible morphological regulation of nanodrugs. Herein, we created a range of morphologically controlled nanoassemblies based on poly(ethylene glycol)--poly(d,l-lactide) (PEG-PLA) block copolymer building blocks, in which the model photosensitizer phthalocyanine was incorporated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!