Neural Population Dynamics and Cognitive Function.

Front Hum Neurosci

Research Service and the Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States.

Published: March 2020

Representations in the brain are encoded as patterns of activity of large populations of neurons. The science of population encoded representations, also known as parallel distributed processing (PDP), achieves neurological verisimilitude and has been able to account for a large number of cognitive phenomena in normal people, including reaction times (and reading latencies), stimulus recognition, the effect of stimulus salience on attention, perceptual invariance, simultaneous egocentric and allocentric visual processing, top-down/bottom-up processing, language errors, the effect of statistical regularities of experience, frequency, and age of acquisition, instantiation of rules and symbols, content addressable memory and the capacity for pattern completion, preservation of function in the face of noisy or distorted input, inference, parallel constraint satisfaction, the binding problem and gamma coherence, principles of hippocampal function, the location of knowledge in the brain, limitations in the scope and depth of knowledge acquired through experience, and Piagetian stages of cognitive development. PDP studies have been able to provide a coherent account for impairment in a variety of language functions resulting from stroke or dementia in a large number of languages and the phenomenon of graceful degradation observed in such studies. They have also made important contributions to our understanding of attention (including hemispatial neglect), emotional function, executive function, motor planning, visual processing, decision making, and neuroeconomics. The relationship of neural network population dynamics to electroencephalographic rhythms is starting to emerge. Nevertheless, PDP approaches have scarcely penetrated major areas of study of cognition, including neuropsychology and cognitive neuropsychology, as well as much of cognitive psychology. This article attempts to provide an overview of PDP principles and applications that addresses a broader audience.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080985PMC
http://dx.doi.org/10.3389/fnhum.2020.00050DOI Listing

Publication Analysis

Top Keywords

population dynamics
8
large number
8
visual processing
8
cognitive
5
function
5
neural population
4
dynamics cognitive
4
cognitive function
4
function representations
4
representations brain
4

Similar Publications

Functional Diversity of Senescent Cells in Driving Aging Phenotypes and Facilitating Tissue Regeneration.

J Biochem

January 2025

Division of Cancer and Senescence Biology, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa, Japan.

As the global population continues to age, understanding the complex role of cellular senescence and its implications in healthy lifespans has gained increasing prominence. Cellular senescence is defined as the irreversible cessation of cell proliferation, accompanied by the secretion of a range of pro-inflammatory factors, collectively termed the senescence-associated secretory phenotype (SASP), in response to various cellular stresses. While the accumulation of senescent cells has been strongly implicated in the aging process and the pathogenesis of age-related diseases owing to their pro-inflammatory properties, recent research has also highlighted their essential roles in processes such as tumour suppression, tissue development, and repair.

View Article and Find Full Text PDF

Cognitive scientists and neuroscientists are increasingly deploying computational models to develop testable theories of psychological functions and make quantitative predictions about cognition, brain activity, and behavior. Computational models are used to explain target phenomena such as experimental effects, individual, and/or population differences. They do so by relating these phenomena to the underlying components of the model that map onto distinct cognitive mechanisms.

View Article and Find Full Text PDF

Transmembrane signaling receptors, such as integrins, organize as nanoclusters that provide several advantages, including increasing avidity, sensitivity (increasing the signal-to-noise ratio), and robustness (signaling threshold) of the signal in contrast to signaling by single receptors. Furthermore, compared to large micron-sized clusters, nanoclusters offer the advantage of rapid turnover for the disassembly of the signal. However, whether nanoclusters function as signaling hubs remains poorly understood.

View Article and Find Full Text PDF

Solvatochromic charge model of isonitrile probes for investigating hydrogen-bond dynamics with 2DIR spectroscopy.

J Chem Phys

January 2025

Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden.

Isonitrile-derivatized amino acids are emerging as highly effective infrared (IR) probes for investigating the structures and dynamics of hydrogen (H)-bonds. These probes enable the quantification of chemical exchange processes in solute-solvent complexes via two-dimensional IR spectroscopy and hold significant promise for site-specific dynamic studies within proteins. Despite their potential, theoretical models that elucidate the solvatochromism of isonitriles remain underdeveloped.

View Article and Find Full Text PDF

An ecological and stochastic perspective on persisters resuscitation.

Comput Struct Biotechnol J

December 2024

Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, 50019, Italy.

Resistance, tolerance, and persistence to antibiotics have mainly been studied at the level of a single microbial isolate. However, in recent years it has become evident that microbial interactions play a role in determining the success of antibiotic treatments, in particular by influencing the occurrence of persistence and tolerance within a population. Additionally, the challenge of resuscitation (the capability of a population to revive after antibiotic exposure) and pathogen clearance are strongly linked to the small size of the surviving population and to the presence of fluctuations in cell counts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!