A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Predictability and variability of association patterns in sooty mangabeys. | LitMetric

Abstract: In many group-living animal species, interactions take place in changing social environments, increasing the information processing necessary to optimize social decision-making. Communities with different levels of spatial and temporal cohesion should differ in the predictability of association patterns. While the focus in this context has been on primate species with high fission-fusion dynamics, little is known about the variability of association patterns in species with large groups and high temporal cohesion, where group size and the environment create unstable subgroups. Here, we use sooty mangabeys as a model species to test predictability on two levels: on the subgroup level and on the dyadic level. Our results show that the entirety of group members surrounding an individual is close to random in sooty mangabeys; making it unlikely that individuals can predict the exact composition of bystanders for any interaction. At the same time, we found predictable dyadic associations based on assortative mixing by age, kinship, reproductive state in females, and dominance rank; potentially providing individuals with the ability to partially predict which dyads can be usually found together. These results indicate that animals living in large cohesive groups face different challenges from those with high fission-fusion dynamics, by having to adapt to fast-changing social contexts, while unable to predict who will be close-by in future interactions. At the same time, entropy measures on their own are unable to capture the predictability of association patterns in these groups.

Significance Statement: While the challenges created by high fission-fusion dynamics in animal social systems and their impact on the evolution of cognitive abilities are relatively well understood, many species live in large groups without clear spatio-temporal subgrouping. Nonetheless, they show remarkable abilities in considering their immediate social environment when making social decisions. Measures of entropy of association patterns have recently been proposed to measure social complexity across species. Here, we evaluate suggested entropy measures in sooty mangabeys. The high entropy of their association patterns would indicate that subgroup composition is largely random, not allowing individuals to prepare for future social environments. However, the existence of strong assortativity on the dyadic level indicates that individuals can still partially predict who will be around whom, even if the overall audience composition might be unclear. Entropy alone, therefore, captures social complexity incompletely, especially in species facing fast-changing social environments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7089916PMC
http://dx.doi.org/10.1007/s00265-020-2829-yDOI Listing

Publication Analysis

Top Keywords

association patterns
24
sooty mangabeys
16
social environments
12
high fission-fusion
12
fission-fusion dynamics
12
social
10
variability association
8
temporal cohesion
8
predictability association
8
large groups
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!