Due to the strongly concentrated electromagnetic field and the ability to detect the below-bandgap photon energies, surface-plasmon-based photodetections have attracted considerable attention. However, the manipulation of plasmonic resonance is complicated with a high cost in fabrication; moreover, the performance of hot-electron photodetectors is generally unsatisfactorily low. Here, we demonstrated that a tunable absorption can be realized by using the nanohole patterned metal-spacer-metal (MSM) structure, which can be wafer-scale fabricated by the nanosphere lithography technology. The angle- and polarization-insensitive absorption is realized under the excitation of the gap-mode plasmons, which can be facilely manipulated in the near-infrared band by varying the thicknesses and material of the spacer as well as the diameter and period of the nanohole arrays. An asymmetrically bended electrical system is proposed to efficiently convert the highly absorbed photon energies into the photocurrent. Results show that the responsivity of the prepared MSM structure can be up to ∼2.82 mA/W at the wavelength of 1150 nm.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.387339 | DOI Listing |
Nanophotonics
March 2024
Institute of Physical and Theoretical Chemistry, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany.
ACS Appl Mater Interfaces
October 2024
School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Plasmon resonance using metal nanostructures enables the realization of high-performance optoelectronic devices via field enhancements in the vicinity of the metal nanostructure. This study proposes an ultrabroadband MoS photodetector based on the gap-mode plasmon of gold nanorods. The use of MoS as a gap spacer for the gap-mode plasmon effect and as a channel material for the photodetector is demonstrated.
View Article and Find Full Text PDFNat Commun
May 2024
Department of Physics, Emory University, Atlanta, GA, 30322, USA.
Photoluminescence from spatially inhomogeneous plasmonic nanostructures exhibits fascinating wavelength-dependent nonlinear behaviors due to the intraband recombination of hot electrons excited into the conduction band of the metal. The properties of the excited carrier distribution and the role of localized plasmonic modes are subjects of debate. In this work, we use plasmonic gap-mode resonators with precise nanometer-scale confinement to show that the nonlinear photoluminescence behavior can become dominated by non-thermal contributions produced by the excited carrier population that strongly deviates from the Fermi-Dirac distribution due to the confinement-induced large-momentum free carrier absorption beyond the dipole approximation.
View Article and Find Full Text PDFRSC Adv
January 2024
Semiconductor Physics and Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology Reichenhainer Str. 70 D-09107 Chemnitz Germany
Nanoscale deformations and corrugations occur in graphene-like two-dimensional materials during their incorporation into hybrid structures and real devices, such as sensors based on surface-enhanced Raman scattering (SERS-based sensors). The structural features mentioned above are known to affect the electronic properties of graphene, thus highly sensitive and high-resolution techniques are required to reveal and characterize arising local defects, mechanical deformations, and phase transformations. In this study, we demonstrate that gap-mode tip-enhanced Raman Scattering (gm-TERS), which offers the benefits of structural and chemical analytical methods, allows variations in the structure and mechanical state of a two-dimensional material to be probed with nanoscale spatial resolution.
View Article and Find Full Text PDFNanotechnology
January 2024
School of Information Science and Engineering, The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Yanshan University, Qinhuangdao, 066004, People's Republic of China.
Optical nanoantennas possess broad applications in the fields of photodetection, environmental science, biosensing and nonlinear optics, owing to their remarkable ability to enhance and confine the optical field at the nanoscale. In this article, we present a theoretical investigation of surface-enhanced photoluminescence spectroscopy for single molecules confined within novel Au bowtie nanoantenna, covering a wavelength range from the visible to near-infrared spectral regions. We employ the finite element method to quantitatively study the optical enhancement properties of the plasmonic field, quantum yield, Raman scattering and fluorescence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!