Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The search for heavy-metal-free quantum-dot light-emitting diodes (QD-LEDs) has greatly intensified in the past few years because device performance still falls behind that of CdSe-based QD-LEDs. Apart from the effects of nanostructures of the emitting materials, the unbalanced charge injection and transport severely affects the performance of heavy-metal-free QD-LEDs. In this work, we presented solution-processed double hole transport layers (HTLs) for improving the device performance of heavy-metal-free Cu-In-Zn-S(CIZS)/ZnS-based QD-LEDs, in which N,N'-Bis(3-methylphenyl)-N,N'-bis(phenyl)benzidine (TPD) as an interlayer was incorporated between the emitting layer and the HTL. Through optimizing the thickness of poly(9,9-dioctylfluorene-co-N-(4-butylphenyl)diphenyl-amine (TFB) and TPD layers, a maximum external quantum efficiency (η) of 3.87% and a current efficiency of 9.20 cd A were achieved in the solution-processed QD-LEDs with double-layered TFB/TPD as the HTLs, which were higher than those of the devices with pristine TFB, TPD and TFB:TPD blended layers. The performance enhancement could be attributed to the synergistic effects of the reduction of the hole injection barrier, the increase of the hole mobility and suppressed charge transfer between the HTL and the emitting layer. Furthermore, the best η of 5.61% with a mean η of 4.44 ± 0.73% was realized in the Cu-In-Zn-S-based QD-LEDs by varying the annealing temperature of TPD layer due to the more balanced charge injection and transport as well as smooth surface of TPD layer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.386276 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!