Based on the experimentally demonstrated In content distribution in the InGaN/GaN quantum wells on a two-section GaN nanorod (NR) sidewall, a white-light light-emitting diode (LED) without phosphor is designed and simulated. Following the dependencies of the In diffusion length and incorporation ratio on NR geometric variables of a theoretical model, the height, radius, and tapering section geometry of the GaN NR are designed for controlling the relative intensities of a blue and a yellow emission component to mix into white light. The higher-In upper section of the NR is first excited to emit a relatively stronger yellow component when injection current is low. As the injection current increases, more current spreads into the lower-In lower section, eventually leading to a stronger blue emission component. The proposed NR LED structure provides an alternative solution for phosphor-free white-light generation.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.387059DOI Listing

Publication Analysis

Top Keywords

gan nanorod
8
emission component
8
injection current
8
theoretical analysis
4
analysis white-light
4
white-light led
4
led array
4
array based
4
based gan
4
nanorod structure
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!